Anticancer strategy: expanding what is druggable

The potential anticancer drugs described in Cancer Cell disrupt the interaction between the cancer-driving protein MDM2 and a RNA encoding a radiation-resistance Read more

Bile acid uptake inhibitor prevents NASH/fatty liver in mice

Fatty liver disease has been a hot area for drug development recently. In Science Translational Medicine: blocking the recycling of bile acids can stop fat accumulation in the liver. Paper describes mice fed a high-fat, high-sugar diet, but clinical study Read more

Sensory connections spill over in synesthesia

Understanding the origins of synesthesia could lead to help for people with dyslexia or other learning Read more

How antiviral antibodies become part of immune memory

Weapons production first, research later. During wartime, governments follow these priorities, and so does the immune system.

When fighting a bacterial or viral infection, an otherwise healthy person will make lots of antibodies, blood-borne proteins that grab onto the invaders. The immune system also channels some of its resources into research: storing some antibody-making cells as insurance for a future encounter, and tinkering with the antibodies to improve them.

In humans, scientists know a lot about the cells involved in immediate antibody production, called plasmablasts, but less about the separate group of cells responsible for the “storage/research for the future” functions, called memory B cells. Understanding how to elicit memory B cells, along with plasmablasts, is critical for designing effective vaccines.

EbolaBcells

Activated B cells (blue) and plasmablasts (red) in patients hospitalized for Ebola virus infection, with a healthy donor for comparison. From Ellebedy et al Nature Immunology (2016).

Researchers at Emory Vaccine Center and Stanford’s Department of Pathology have been examining the precursors of memory B cells, called activated B cells, after influenza vaccination and infection and during Ebola virus infection. The Ebola-infected patients were the four who were treated at Emory University Hospital’s Serious Communicable Disease Unit in 2014.

The findings were published Monday, August 15 in Nature Immunology.

“Ebola virus infection represents a situation when the patients’ bodies were encountering something they’ve never seen before,” says lead author Ali Ellebedy, PhD, senior research scientist at Emory Vaccine Center. “In contrast, during both influenza vaccination and infection, the immune system generally is relying on recall.”

Unlike plasmablasts, activated B cells do not secrete antibodies spontaneously, but can do so if stimulated. Each B cell carries different rearrangements in its DNA, corresponding to the specificity and type of antibody it produces. The rearrangements allowed Ellebedy and his colleagues to track the activated B cells, like DNA bar codes, as an immune response progresses. Read more

Posted on by Quinn Eastman in Immunology Leave a comment

Stay out, stray stem cells

Despite the hubbub about pluripotent stem cells’ potential applications, when it comes time to introduce products into patients, the stem cells are actually impurities that need to be removed.

That’s because this type of stem cell is capable of becoming teratomas – tumors — when transplanted. For quality control, researchers want to figure out how to ensure that the stem-cell-derived cardiac muscle or neural progenitor or pancreas cells (or whatever) are as pure as possible. Put simply, they want the end product, not the source cells.

Stem cell expert Chunhui Xu (also featured in our post last week about microgravity) has teamed up with biomedical engineers Ximei Qian and Shuming Nie to develop an extremely sensitive technique for detecting stray stem cells.PowerPoint Presentation

The technique, described in Biomaterials, uses gold nanoparticles and Raman scattering, a technology previously developed by Qian and Nie for cancer cell detection (2007 Nature Biotech paper, 2011 Cancer Research paper on circulating tumor cells). In this case, the gold nanoparticles are conjugated with antibodies against SSEA-5 or TRA-1-60, proteins that are found on the surfaces of stem cells. Read more

Posted on by Quinn Eastman in Heart Leave a comment

Microgravity means more cardiac muscle cells

Cardiac muscle cells derived from stem cells could eventually be used to treat heart diseases in children or adults, reshaping hearts with congenital defects or repairing damaged tissue.

srep30956-f2

Cardiomyocytes produced with the help of simulated microgravity. Red represents the cardiac muscle marker troponin, and green is cadherin, which helps cells stick to each other. Blue = cell nuclei. From Jha et al SciRep (2016).

Using the right growth factors and conditions, it is possible to direct pluripotent stem cells into becoming cardiac muscle cells, which form spheres that beat spontaneously. Researchers led by Chunhui Xu, PhD, director of the Cardiomyocyte Stem Cell Laboratory in Emory’s Department of Pediatrics, are figuring out how to grow lots of these muscle cells and keep them healthy and adaptable.

As part of this effort, Xu and her team discovered that growing stem cells under “simulated microgravity” for a few days stimulates the production of cardiac muscle cells, several times more effectively than regular conditions. The results were published on Friday, Aug. 5 in Scientific Reports. The first author of the paper is postdoctoral fellow Rajneesh Jha, PhD. Read more

Posted on by Quinn Eastman in Heart Leave a comment

HD monkeys display full spectrum of symptoms seen in humans

Transgenic Huntington’s disease monkeys display a full spectrum of symptoms resembling the human disease, ranging from motor problems and neurodegeneration to emotional dysregulation and immune system changes, scientists at Yerkes National Primate Research Center, Emory University report.

The results, published online in the journal Brain, Behavior and Immunity, strengthen the case that transgenic Huntington’s disease monkeys could be used to evaluate emerging treatments (such as this) before launching human clinical trials.

“Identifying emotional and immune symptoms in the HD monkeys, along with previous studies demonstrating their cognitive deficits and fine motor problems, suggest the HD monkey model embodies the full array of symptoms similar to human patients with the disease,” says Yerkes research associate Jessica Raper, PhD, lead author of the paper. Read more

Posted on by Quinn Eastman in Neuro Leave a comment

The cure word, as applied to HIV

HIV researchers are becoming increasingly bold about using the “cure” word in reference to HIV/AIDS, even though nobody has been cured besides the “Berlin patient,” Timothy Brown, who had a fortuitous combination of hematopoetic stem cell transplant from a genetically HIV-resistant donor. Sometimes researchers use the term “functional cure,” meaning under control without drugs, to be distinct from “sterilizing cure” or “eradication,” meaning the virus is gone from the body. A substantial obstacle is that HIV integrates into the DNA of some white blood cells.

HIV cure research is part of the $35.6 million, five-year grant recently awarded by the National Institutes of Health to Yerkes/Emory Vaccine Center/Emory Center for AIDS Research. Using the “shock and kill” approach during antiviral drug therapy, researchers will force HIV (or its stand-in in non-human primate research, SIV) to come out of hiding from its reservoirs in the body. The team plans to test novel “latency reversing agents” and then combine the best one with immunotherapeutic drugs, such as PD-1 blockers, and therapeutic vaccines.

The NIH also recently announced a cluster of six HIV cure-oriented grants, named for activist Martin Delaney, to teams led from George Washington University, University of California, San Francisco, Fred Hutchinson Cancer Research Center, Wistar Institute, Philadelphia, Beth Israel Deaconess Medical Center and University of North Carolina. Skimming through the other teams’ research plans, it’s interesting to see the varying degrees of emphasis on “shock and kill”/HIV latency, enhancing the immune response, hematopoetic stem cell transplant/adoptive transfer and gene editing weaponry vs HIV itself.

Posted on by Quinn Eastman in Immunology Leave a comment

A sweet brain preserver: trehalose

It’s sweet, it’s safe, and it looks like it could save neurons. What is it? Trehalose.

Trehalose molecule

Trehalose is a natural sugar.

This natural sugar is used in the food industry as a preservative and flavor enhancer (it’s in Taco Bell’s meat filling). And curiously, medical researchers keep running into trehalose when they’re looking for ways to fight neurodegenerative diseases.

A recent example from Emory’s Department of Pharmacology: Chris Holler, Thomas Kukar and colleagues were looking for drugs that might boost human cells’ production of progranulin (PGRN), a growth factor that keeps neurons healthy. Mutations in the progranulin gene are a common cause of frontotemporal dementia.

The Emory scientists discovered two leads: a class of compounds called mTOR inhibitors — the transplant drug rapamycin is one — and trehalose. The team decided to concentrate on trehalose because it increased PGRN levels in neuronal and non-neuronal cell types, unlike the mTOR inhibitors. Their results were published at the end of June in Molecular Neurodegeneration.

The team confirmed their findings by examining the effects of trehalose on cells derived from patients with progranulin mutations. This paper is the first to include results from Emory’s Laboratory of Translational Cell Biology, which was established in 2012 to facilitate this type of “disease in a dish” approach. Cell biologists Charles Easley, Wilfried Rossoll and Gary Bassell from the LTCB, and neurologists Chad Hales and William Hu from the Center for Neurodegenerative Disease are co-authors.

Read more

Posted on by Quinn Eastman in Neuro Leave a comment

Outcomes in minimally invasive lung cancer surgery

To accompany our recent article on minimally invasive lung surgery for Winship magazine, please find a video featuring thoracic surgeon Manu Sancheti, MD.

As Sancheti explains, an advantage of minimally invasive approaches (sometimes called VATS for video-assisted thoracic surgery) is that surgeons do not open the patient’s chest, avoiding pain and potential complications and reducing length of stay in the hospital.

Among thoracic surgeons, the shift to this type of approach has taken place in the last few years — unevenly. Here’s a graph froLung surgery graphm one recent publication from Felix Fernandez, MD and colleagues, showing the percent of stage I lung cancer surgeries — compiled for individual surgeons in the Society of Thoracic Surgeons  — that are minimally invasive from 2011-2014. The average is about 63 percent, but it varies widely.

Attention medical journalists: if you want to ask questions like “Are these minimally invasive lung surgery approaches really good for long term patient outcomes?”, Fernandez is your guy. As the numbers come in, he is leading a team that is analyzing them. Read more

Posted on by Quinn Eastman in Cancer Leave a comment

Challenging long-held dogmas in cardiology

IGF1_heart

The growth factor IGF-1 (red) peaks roughly two days after an artificial heart attack in mice. But its levels are limited by an enzyme called chymase produced by mast cells. What if the influence of chymase could be curtailed?

Alert to science journalists looking for active debate: Emory cardiology researchers Nawazish Naqvi and Ahsan Husain are not afraid of controversy in their field.

In a 2014 Cell paper, they challenged the long-held assumption that after birth, cardiac muscle cells do not divide, showing a dramatic burst of thyroid hormone-driven cell division in the hearts of preadolescent mice. This finding has implications for regenerative medicine if it can be harnessed, but also stimulated a cluster of papers aiming to refute their findings in Cell the following year (and more are coming).

A second assumption that they’ve challenged more recently is that hours after a heart attack, endangered cardiac muscle cells can’t be rescued. Husain and Naqvi’s paper, published this week in PNAS, shows that the enzyme chymase — produced by a type of immune cell called mast cells — limits the heart’s ability to heal itself. Critically, differences in the extent of damage seen in mice lacking chymase and controls show up days after an artificial heart attack. More here.

Posted on by Quinn Eastman in Uncategorized Leave a comment

How Zika infects the placenta

Zika virus can infect and replicate in immune cells from the placenta, without killing them, scientists have discovered. The finding may explain how the virus can pass through the placenta of a pregnant woman, on its way to infect developing brain cells in her fetus.

Zika_in_vitro_smaller

Infected placental macrophages. Zika antigens visible in red. From Quicke et al (2016).

The results were published in Cell Host & Microbe.

“Our results substantiate the limited evidence from pathology case reports,” says senior author Mehul Suthar, PhD, assistant professor of pediatrics at Emory University School of Medicine. “It was known that the virus was getting into the placenta. But little was known about where the virus was replicating and in what cell type.”

Scientists led by Suthar and Emory pediatric infectious disease specialist Rana Chakraborty, MD, found that Zika virus could infect placental macrophages, called Hofbauer cells, in cell culture. The virus could also infect another type of placental cell, called cytotrophoblasts, but only after a couple days delay and not as readily. Other researchers recently reported that syncytiotrophoblasts, a more differentiated type of placental cell than cytotrophoblasts, are resistant to Zika infection.

The cells for the experiments were derived from full-term placentae, obtained from healthy volunteers who delivered by Cesarean section. The level of viral replication varied markedly from donor to donor, which hints that some women’s placentae may be more susceptible to viral infection than others. Read more

Posted on by Quinn Eastman in Immunology Leave a comment

Four take-home thoughts on NGLY1

Please check out our feature in Emory Medicine magazine about two sisters with NGLY1 deficiency. This rare genetic disorder was identified only a few years ago, and now a surge of research is directed toward uncovering its mysteries.

  1. The Stinchcombs are amazing. Seth Mnookin’s July 2014 piece in the New Yorker, and especially, his comments at the end of an interview with The Open Notebook drove me to contact them. “The father cares for the two girls with this disease full time. The mother is working insane hours. And while all this is going on, they’re the most good-natured … I don’t know, they just seem like they’re happy.”
  1. Several research teams around the world are investigating NGLY1 deficiency and potential remedies. For the magazine article, I talked with Emory geneticist Michael Gambello, Hudson Freeze at Sanford Burnham and Lynne Wolfe at the NIH Undiagnosed Diseases Program. Even more: the Grace Science Foundation, established by the Wilsey family, is supporting research at Retrophin/Notre Dame and Gladstone/UCSF. The independent Perlstein lab is investigating NGLY1 deficiency in fruit flies (reminiscent of Emory research from a decade ago on Fragile X syndrome).
  1. There’s a long road ahead for rare genetic disorders such as NGLY1 deficiency. That’s why the title that EM editor Mary Loftus came up with, “In time to help Jessie,” is so poignant. When I read Abby Goodnough’s New York Times piece on RCDP, which is a rare inherited bone disease that also involves seizures, I thought: “That could be NGLY1 in ten years.” Still, progress is possible, as demonstrated by this recent NEJM report on exome sequencing and neurometabolic disorders from British Columbia.

Read more

Posted on by Quinn Eastman in Neuro Leave a comment