Overcoming cardiac pacemaker "source-sink mismatch"

Instead of complication-prone electronic cardiac pacemakers, biomedical engineers at Georgia Tech and Emory envision the creation of “biological Read more

Hope Clinic part of push to optimize HIV vaccine components

Ten years ago, the results of the RV144 trial– conducted in Thailand with the help of the US Army -- re-energized the HIV vaccine field, which had been down in the Read more

Invasive cancer cells marked by distinctive mutations

What does it take to be a leader – of cancer cells? Adam Marcus and colleagues at Winship Cancer Institute are back, with an analysis of mutations that drive metastatic behavior among groups of lung cancer cells. The findings were published this week on the cover of Journal of Cell Science, and suggest pharmacological strategies to intervene against or prevent metastasis. Marcus and former graduate student Jessica Konen previously developed a technique for selectively labeling “leader” Read more

immunology

Immunologists identify T cell homing beacons for lungs

Scientists have identified a pair of molecules critical for T cells, part of the immune system, to travel to and populate the lungs. A potential application could be strengthening vaccines against respiratory pathogens such as influenza.

The findings were published online Thursday, September 26 in Journal of Experimental Medicine.

T cells in the lungs, courtesy of Alex Wein. Blue represents respiratory epithelium (EpCAM), while various T cells stain red, yellow or green.

Much research on immunity to influenza virus focuses on antibodies, infection- or vaccine-induced proteins in the blood that can smother viruses. But CD8 T cells, which survey other cells for signs of viral infection and kill infected cells, are an important arm of our defenses too. The epitopes – or bits of viral protein – they recognize generally do not change from year to year.

Researchers led by Jacob Kohlmeier, PhD, at Emory University School of Medicine wanted to learn more about what’s needed to get CD8 T cells into the lungs, since the lungs will often contain the first cells incoming virus will have a chance to infect. However, T cells don’t stick around in the lungs for extended amounts of time.

“The airways are a unique environment in the body,” says Alex Wein, a MD/PhD student who trained in Kohlmeier’s lab. “They’re high in oxygen but low in nutrients. Unlike other tissues, when T cells enter the airways, it’s a one-way trip and they have a half-life of a few weeks, so they must be continually repopulated.”

Wein, his fellow MD/PhD Sean McMaster, now at Boston Consulting Group, and Shiki Takamura at Kindai University are co-first authors of the paper. Kohlmeier is assistant professor of microbiology and immunology and part of the Emory-UGA Center of Excellence for Influenza Research and Surveillance.

The researchers showed that two molecules, called CXCR6 and CXCL16, are needed for CD8 T cells to reach the airways in mice. CXCR6 is found on T cells and CXCL16 is produced by the epithelial cells lining the airways of the lungs. Read more

Posted on by Quinn Eastman in Immunology Leave a comment

Are immune-experienced mice better for sepsis research?

Why isn’t a laboratory mouse more like a human? There are several answers, beyond the differences in size and physiology between mice and humans, such as microbiome and immunological experience. Emory researchers led by Mandy Ford and Craig Coopersmith recently published a couple papers that aim to take those factors into account.

The goal is to make mouse immune systems and microbiomes more complex and more like those in humans, so the mice they can better model the deadly derangement of sepsis. So far, sepsis research in mice has been a poor predictor of clinical success. This aligns with work at the National Institutes of Health on “wildling” mice, which have microbes more like wild mice. (Lab Land likes noticing a trend that Emory researchers are part of.)

One Emory paper, in FASEB Journal, shows that mortality in a mouse model of sepsis varies according to the commercial facility where the mice came from. When the mice were allowed to live together and exchange microbes, mortality numbers evened out.

Another, published in JCI Insight, looks at mice that have more memory T cells than naïve mice, since adult humans have a high proportion of memory T cells in their immune systems. Other scientists have shown that sepsis leads to a wipeout of memory T cells, and probably vulnerability in defending against infection. Read more

Posted on by Quinn Eastman in Immunology Leave a comment

Antibody diversity mutations come from a vast genetic library

Vaccine scientists want to nudge the immune system into producing antibodies that will protect us from infection. In doing so, they are playing with fire – in a limited way. With every healthy antibody response, a process of internal evolution takes place among B cells, the immune cells that produce antibodies. It’s called “somatic hypermutation.”

In the lymph nodes, individual B cells undergo an accelerated rate of mutation. It’s as if those B cells’ DNA were being cooked with radiation or mutagenic chemicals – but only in a few genes. Then the lymph nodes select the B cells with high-affinity antibodies.

Gordon Dale, a just-defended graduate student from Joshy Jacob’s lab in Emory Vaccine Center, has a new paper in Journal of Immunology that sheds light on how somatic hypermutation takes place in both mice and humans.

In particular, Dale and Jacob found that the mutations that occur in human and mouse antibody genes are not random. They appear to borrow information from gene segments that are leftovers from the process of assembling antibody DNA in B cells.

In a mix and match process called VDJ recombination, B cells use one of many V, D, and J segments to form their antibody genes. What Dale and Jacob were looking at occurs after the VDJ step, when B cells get stimulated as part of an immune response.

They analyzed the patterns of mutations in human and mouse antibody genes, and found that mutations tend to come together, in a way that suggests that they are being copied from leftover V segments. They call this pattern “tem Read more

Posted on by Quinn Eastman in Immunology Leave a comment

B cells off the rails early in lupus

New research on the autoimmune disease systemic lupus erythematosus (SLE) provides hints to the origins of the puzzling disorder. The results are published in Nature Immunology.

In people with SLE, their B cells – part of the immune system – are abnormally activated. That makes them produce antibodies that react against their own tissues, causing a variety of symptoms, such as fatigue, joint pain, skin rashes and kidney problems.

Scientists at Emory University School of Medicine could discern that in people with SLE, signals driving expansion and activation are present at an earlier stage of B cell differentiation than previously appreciated. They identified patterns of gene activity that could be used as biomarkers for disease development.

Activation can be observed at an early stage of B cell differentiation: resting naive cells (pink ellipse). Adapted from Jenks et al Immunity (2018).

“Our data indicate a disease signature across all cell subsets, and importantly on mature resting B cells, suggesting that such cells may have been exposed to disease-inducing signals,” the authors write.

The paper reflects a collaboration between the laboratories of Jeremy Boss, PhD, chairman of microbiology and immunology, and Ignacio (Iñaki) Sanz, MD, head of the division of rheumatology in the Department of Medicine. Sanz, recipient of the 2019 Lupus Insight Prize from the Lupus Research Alliance, is director of the Lowance Center for Human Immunology and a Georgia Research Alliance Eminent Scholar. The first author is Christopher Scharer, PhD, assistant professor of microbiology and immunology.

The researchers studied blood samples from 9 African American women with SLE and 12 healthy controls. They first sorted the B cells into subsets, and then looked at the DNA in the women’s B cells, analyzing the patterns of gene activity. Sanz’s team had previously observed that people with SLE have an expansion of “activated naïve” and DN2 B cells, especially during flares, periods when their symptoms are worse. Read more

Posted on by Quinn Eastman in Immunology Leave a comment

Mopping up immune troublemakers after transplant

Emory scientists have identified a way to stop troublemaker cells that are linked to immune rejection after kidney transplant. The finding could eventually allow transplant patients to keep their new kidneys for as long as possible, without the side effects that come from some current options for controlling immune rejection.

The results are published in Journal of Clinical Investigation.

The standard drugs used for many years, calcineurin inhibitors, show side effects on cardiovascular health and can even damage the kidneys over time. A newer FDA-approved medication called belatacept, developed in part at Emory, avoids these harmful effects but is less effective at stopping acute rejection immediately after the transplant. Belatacept is a “costimulation blocker” – it interferes with a signal some immune cells (T cells) need to proliferate and become activated.

Researchers led by Emory transplant surgeon Andrew Adams, MD, PhD suspected that long-lasting memory CD8+ T cells were resistant to belatacept’s effects.

“Our previous work identified that memory CD8+ T cells may be elevated in animals and human patients who go on to reject their transplanted organs while taking belatacept,” says Dave Mathews, an MD/PhD student who worked with Adams and is the first author of the paper.

The researchers identified a certain marker, CD122, which was present on memory CD8+ T cells and important for their activity. On T cells, CD122 acts as a receiving dish for two other secreted molecules, IL-2 and IL-15, generally thought of as inflammatory cytokines, or protein messengers that can encourage graft rejection. Read more

Posted on by Quinn Eastman in Immunology Leave a comment

Probiotics for bone health study heads into clinic

Probiotic supplements can protect female mice from the loss of bone density that occurs after having their ovaries removed, researchers at Emory and Georgia State reported a couple years ago.

Roberto Pacifici, MD

This finding, published in Journal of Clinical Investigation, had clear implications for the treatment of osteoporosis in post-menopausal women. Prompted by external emails, Lab Land learned that the Emory investigators are now continuing their research in the clinic.

Endocrinologist/osteoimmunologist Roberto Pacifici and colleague Jessica Alvarez are conducting a double-blind study for women aged 50-65, using VSL3, a widely available and inexpensive dietary supplement. Participants would take the supplement or placebo for a year. More information is available here.

In mice, the loss of estrogen increases gut permeability, which allows bacterial products to activate immune cells in the intestine. In turn, immune cells release signals that break down bone. It appears that probiotics both tighten up the permeability of the gut and dampen inflammatory signals that drive the immune cells. Read more

Posted on by Quinn Eastman in Immunology Leave a comment

Less mucus, more neutrophils: alternative view of CF

A conventional view of cystic fibrosis (CF) and its effects on the lungs is that it’s all about mucus. The inherited disease leads to an accumulation of mucus in the lungs, which appears to be connected with inflammation, susceptibility to infection and loss of lung capacity.

Immunologist Rabin Tirouvanziam has an alternative view, centered on neutrophils. They are a type of immune cell that is very numerous, yet often overlooked, he says.

Rabindra Tirouvanziam, PhD

A new paper, published in Journal of Leukocyte Biology, substantiates his ideas about cystic fibrosis and harnesses them for future diagnostic and therapeutic advances. Tirouvanziam is an assistant professor of pediatrics at Emory University School of Medicine and Emory Children’s Center. He and his colleagues have developed a system for studying neutrophil behavior in a specialized culture, a model of a cell layer in the lung.

Neutrophils behave differently in the diseased lung environment, compared with when they are in the blood. The culture system makes the neutrophils pass through a layer of lung cells, under the influence of lung fluids obtained from CF patients. The culture system opens up the opportunity of testing fluids from patients to mark disease progression, as well as drug discovery: looking for compounds that could deprogram the neutrophils. Read more

Posted on by Quinn Eastman in Immunology Leave a comment

Exotic immune systems are big business

What timing! Just when our feature on Max Cooper and lamprey immunology was scheduled for publication, the Japan Prize Foundation announced it would honor Cooper and his achievements.

Cooper was one of the founders of modern immunology. We connect his early work with his lab’s more recent focus on lampreys, primitive parasites with surprisingly sophisticated immune systems.

Molecules from animals with exotic immune systems can be big business, as Andrew Joseph from STAT News points out. Pharmaceutical giant Sanofi recently bought a company focused on nanobodies, originally derived from camels, llamas and alpacas, for $4.8 billion.

Lampreys’ variable lymphocyte receptors (VLRs) are their version of antibodies, even though they look quite different in molecular terms. Research on VLRs and their origins may seem impractical. However, Cooper’s team has shown their utility as diagnostic tools, and his colleagues have been weaponizing them, possibly for use in cancer immunotherapy.

CAR-T cells have attracted attention for dramatic elimination of certain types of leukemias from the body and also for harsh side effects and staggering costs; see this opinion piece by Georgia Tech’s Aaron Levine. Now many research teams are scheming about how to apply the approach to other types of cancers. The provocative idea is: replace the standard CAR (chimeric antigen receptor) warhead with a lamprey VLR.

Read more

Posted on by Quinn Eastman in Cancer, Immunology Leave a comment

Update on SIV remission studies

Tab Ansari’s research at Emory/Yerkes on how an antibody treatment can push monkeys infected with SIV into remission was published in Science last year. At that time, Ansari told Lab Land about follow-up experiments to probe which immune cells are needed for this effect, which surprised many HIV/AIDS experts.

Ansari’s partner on the project, NIAID director Anthony Fauci, described the follow-up work in July at the International AIDS Society Conference in Paris. We thank Treatment Action Group’s Richard Jefferys for taking notes and posting a summary:

The approach that the researchers took was to deplete different types of immune cells in the animals controlling SIV viral load, then assess whether this led to an increase in viral replication. The experiments compared:

*Antibodies to the CD8 receptor alpha chain, which deplete CD8 T cells, natural killer T cells (NKTs) and natural killer (NK) cells

*Antibodies to the CD8 receptor beta chain, which deplete CD8 T cells

*Antibodies to CD20, which deplete B cells

According to Fauci’s slides, which are available online, there was a transient rebound in viral load with the CD8 alpha antibody and to a small degree with the CD8 beta. This suggests NKTs and NK cells are making a contribution to the observed control of SIV replication, but a role for CD8 T cells cannot be ruled out.

For comparison, a study from Guido Silvestri and colleagues at Yerkes published in 2016 found that treating SIV-infected monkeys with anti-CD8 antibodies, without stopping antiretroviral drugs, resulted in a rebound in virus levels. [They used ultrasensitive assays to detect the rebound.] However, the Yerkes team only used antibodies to the CD8 receptor alpha chain.

Read more

Posted on by Quinn Eastman in Immunology Leave a comment

SIV remission follow-up

The surprising finding that an antibody treatment can push SIV-infected monkeys into prolonged remission, even after antiviral drugs are stopped, continues to rumble across the internet.

siv-a4b7-teaser-copy

Blue circles show how viral levels stayed low even after antiretroviral drugs were stopped.

The Science paper was featured on NIH director Francis Collins’ blog this week. NIAID director Anthony Fauci has been giving presentations on the research, which emerged from a collaboration from his lab and Tab Ansari’s at Emory. Fauci’s talk at the recent HIV prevention meeting in Chicago is viewable here.

At Lab Land, we were pleased to see that the watchdogs at Treatment Action Group had this to say:

“Media coverage of the paper has generally been accurate, but has had to wrestle with the uncertainty that exists among scientists regarding how ART-free control of viral load should be described.”

HIV pioneer Robert Gallo noted in an article accompanying the Science paper that the anti-integrin antibody treatment represents an emerging alternative to the vaunted “shock and kill” strategy, which he termed “soothe and snooze.” Note to reporters: the upcoming “Strategies for an HIV cure” conference at NIH in mid-November might be a good chance to compare the different strategies and put them in perspective.

Read more

Posted on by Quinn Eastman in Immunology Leave a comment