‘Genetic doppelgangers:’ Emory research provides insight into two neurological puzzles

An international team led by Emory scientists has gained insight into the pathological mechanisms behind two devastating neurodegenerative diseases. The scientists compared the most common inherited form of amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD) with a rarer disease called spinocerebellar ataxia type 36 (SCA 36). Both of the diseases are caused by abnormally expanded and strikingly similar DNA repeats. However, ALS progresses quickly, typically killing patients within a year or two, while the disease Read more

Emory launches study on COVID-19 immune responses

Emory University researchers are taking part in a multi-site study across the United States to track the immune responses of people hospitalized with COVID-19 that will help inform how the disease progresses and potentially identify new ways to treat it.  The study is funded by the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health. The study – called Immunophenotyping Assessment in a COVID-19 Cohort (IMPACC) – launched Friday. Read more

Marcus Lab researchers make key cancer discovery

A new discovery by Emory researchers in certain lung cancer patients could help improve patient outcomes before the cancer metastasizes. The researchers in the renowned Marcus Laboratory identified that highly invasive leader cells have a specific cluster of mutations that are also found in non-small cell lung cancer patients. Leader cells play a dominant role in tumor progression, and the researchers discovered that patients with the mutations experienced poorer survival rates. The findings mark the first Read more

antiviral drugs

Antios moving ahead with potential drug vs hepatitis B

Antios Therapeutics is moving ahead with Phase I clinical studies in Canada and Europe of an antiviral drug aimed at hepatitis B. Antios was formed in 2018 based on technology licensed from DRIVE, the non-profit drug development company owned by Emory.

Antios is developing ATI-2173, which was designed to direct a form of the drug clevudine to the liver. Pharmasset, formed by Emory scientists and later acquired by Gilead, was previously developing clevudine against hepatitis B. Pharmasset decided to stop clinical studies of clevudine in 2009 because of reports of drug-induced myopathy from South Korea. ATI-2173 is supposed to selectively deliver the drug to the liver, potentially eliminating off-target effects.

(DRIVE is also developing an drug with activity against influenza and the new coronavirus, but hepatitis B – with a weird partly double-stranded DNA genome— is quite different from both flu and coronaviruses. It does underline DRIVE’s experience with antivirals.)

Antios recently announced that the US Patent and Trademark Office has issued a notice of allowance for a patent covering ATI-2173. A full description is available from the World Intellectual Property Organization portal.

The patent is based on research carried out at Emory by Antios CEO and co-founder Abel De La Rosa, PhD, who was previously chief scientific officer at DRIVE and Emory Institute for Drug Development, and before that, an executive at Pharmasset. Read more

Posted on by Quinn Eastman in Immunology Leave a comment

What are rods and rings?

This image of mouse embryonic fibroblasts comes from Cara Schiavon, a graduate student in Rick Kahn’s lab in the Department of Biochemistry. It was impressive enough to capture interest from Emory Medicine‘s graphics designer Peta Westmaas. The light green shapes are “Rods and Rings,” structures that were identified just a few years ago by scientists studying how cells respond to antiviral drugs, such as those used against hepatitis C.

The rod and ring structures appear to contain enzymes that cells use for synthesizing DNA building blocks. Patients treated with some antiviral drugs develop antibodies against these enzymes.

The turquoise color represents microtubules, components of cells’ internal skeletons. The orange color shows DNA within nuclei. The spots in the nuclei are areas where DNA is more compact. The overall image is a “z-stack projection” acquired using the Olympus FV1000 confocal microscope in Emory’s Integrated Cellular Imaging Core.

Posted on by Quinn Eastman in Uncategorized Leave a comment