Molecular picture of how antiviral drug molnupiravir works

A cryo-EM structure showing how the antiviral drug molnupiravir drug Read more

Straight to the heart: direct reprogramming creates cardiac “tissue” in mice

New avenues for a quest many cardiologists have pursued: repairing the damaged heart like patching a Read more

The future of your face is plastic

An industrial plastic stabilizer becomes a skin Read more

social isolation

Social isolation and the adolescent brain

We can’t read Emory neuroscientist Shannon Gourley’s papers on social isolation in adolescent mice, without thinking about how the COVID-19 pandemic is affecting children and teenagers. Much of the experimental work was completed before the pandemic began. Still, in the future, researchers will be studying the effects of the pandemic on children, in terms of depression and anxiety, or effects on relationships and education. They could look to neuroscience studies such as Gourley’s for insights into brain mechanisms.

What will the social isolation of the pandemic mean for developing brains?

In the brain, social isolation interferes with the pruning of dendritic spines, the structures that underly connections between neurons. One might think that more dendritic spines are good, but the brain is like a sculpture taking shape – the spines represent processes that are refined as humans and animals mature.

Mice with a history of social isolation have higher spine densities in regions of the brain relevant to decision-making, such as the prefrontal cortex, the Emory researchers found.

In a recently published review, Gourley and her co-authors, former graduate student Elizabeth Hinton and current MD/PhD Dan Li, say that more research is needed on whether non-social enrichment, such as frequent introduction of new toys, can compensate for or attenuate the effects of social isolation.

This research is part of an effort to view adolescent mental health problems, such as depression, obesity or substance abuse, through the prism of decision-making. The experiments distinguish between goal-oriented behaviors and habits. For humans, this might suggest choices about work/school, food, or maybe personal hygiene. But in a mouse context, this consists of having them poke their noses in places that will get them tasty food pellets, while they decode the information they have been given about what to expect. 

Read more

Posted on by Quinn Eastman in Uncategorized Leave a comment