Engineered “stealth bomber” virus could be new weapon against metastatic cancer

Researchers at Emory and Case Western Reserve have re-engineered a cancer-killing virus, so that it is not easily caught by parts of the immune system. Read more

Another side to cancer immunotherapy? Emory scientists investigate intratumoral B cells

B cells represent the other major arm of the adaptive immune system, besides T cells, and could offer opportunities for new treatments against some kinds of Read more

Don’t go slippery on me, tRNA

RNA can both carry genetic information and catalyze chemical reactions, but it’s too wobbly to accurately read the genetic code by itself. Enzymatic modifications of transfer RNAs – the adaptors that implement the genetic code by connecting messenger RNA to protein – are important to stiffen and constrain their interactions. Biochemist Christine Dunham’s lab has a recent paper in eLife showing a modification on a proline tRNA prevents the tRNA and mRNA from slipping out Read more

Cancer

Another side to cancer immunotherapy? Emory scientists investigate intratumoral B cells

Immunotherapies have transformed the treatment of several types of cancer over the last decade. Yet they focus on reactivating one arm of the immune system: cytotoxic T cells, which sniff out and kill tumor cells.

In a new paper in Nature, scientists at Emory Vaccine Center and Winship Cancer Institute of Emory University (Winship) report on their detailed look at B cells’ presence inside tumors. B cells represent the other major arm of the adaptive immune system, besides T cells, and could offer opportunities for new treatments against some kinds of cancers.

“Intratumoral B cells are an area of growing interest, because several studies have now shown that they are associated with a better prognosis and longer survival,” says first author Andreas Wieland, PhD, an Instructor in Rafi Ahmed’s lab at Emory Vaccine Center. “However, nobody really knows what those B cells are specific for.”

Wieland, Ahmed and colleagues decided to concentrate on head and neck cancers that were positive for human papillomavirus (HPV), because the virus provided a defined set of tumor-associated antigens, facilitating the study of tumor-specific B cells across patients.

“Our findings open the door for harnessing this type of cancer-specific immunity in future immunotherapy applications,” says Nabil Saba, MD, director of the head and neck medical oncology program at Winship. “This has implications not just for HPV-related squamous cell carcinomas of the head and neck, but for the broader field of immuno-oncology.”

The Emory Vaccine Center researchers worked with Saba and Winship surgeon Mihir Patel, MD to obtain samples of head and neck tumors removed from 43 patients.

“This has been a wonderful collaborative effort,” Patel adds. “We’re grateful to the patients whose tumor samples contributed to this study, and I’m looking forward to where this information takes us.”

Within HPV-positive tumors, researchers found an enrichment for B cells specific to HPV proteins, and a subset of these cells were actively secreting HPV-specific antibodies. In the tumors, they could see germinal center-like structures, resembling the regions within lymph nodes where B cells are “trained” during an immune response.

Orange represents tumor cells displaying the antigen p16, while green represents B cells, with the arrows indicating germinal center-like structures. Courtesy of Andreas Wieland.

Read more

Posted on by Quinn Eastman in Cancer, Immunology Leave a comment

Seeing the value: prostate cancer imaging agent developed at Winship

A study from Winship Cancer Institute of Emory University has the potential to change how patients whose prostate cancer recurs after prostatectomy are treated. The study was featured in both the plenary session and press program of the American Society for Radiation Oncology (ASTRO) Annual Meeting on Monday, October 26.

The Emory Molecular Prostate Imaging for Radiotherapy Enhancement, or EMPIRE-1 trial (NCT01666808), is the first randomized trial of men with prostate cancer with recurring cancer to show that treatment based on advanced molecular imaging can improve disease-free survival rates. The molecular imaging used in the study, the radiotracer fluciclovine (18F) PET, was invented and developed at Emory and Winship.

The phase II/III trial was led by Winship radiation oncologist and prostate cancer specialist Ashesh B. Jani, MD, MSEE, FASTRO, and Winship nuclear radiology specialist David M. Schuster, MD, FACR. The trial enrolled 165 patients whose cancer recurred after having undergone prostatectomies. One group received radiation therapy based on conventional imaging. The other group received treatment that was finalized based on imaging with the fluciclovine PET radiotracer. Those whose treatment was adjusted according to the results of the advanced molecular imaging showed an improvement in the cancer control end point.

“At three years, the group getting treatment guided by PET fluciclovine had a 12 percent better cancer control rate, and this persisted at four years as well, with a 24% improvement,” says Jani. “We think the improvement was seen because the novel PET allowed for better selection of patients for radiation, better treatment decisions, and better radiation target design.”

Fluciclovine PET imaging has been getting some attention in the urology/prostate cancer world.

More details here.

Posted on by Quinn Eastman in Cancer Leave a comment

Peeling away pancreatic cancers’ defenses

At Winship Cancer Institute, pancreatic cancer researcher Greg Lesinski and colleagues have a new paper in Molecular Cancer Therapeutics. It’s about a combination immunotherapy approach that gets through pancreatic cancers’ extra defenses, and it represents the preclinical counterpart to a clinical trial that is underway and almost finished at Winship, under the direction of GI oncologist Bassel El-Rayes.

Immunotherapies have transformed how other forms of cancer are treated, but for pancreatic cancers, an obstacle is getting through the dense layers of cellular shielding that the cancers build around themselves. Pancreatic cancers create “nests” of fibrotic stellate cells that pump out inflammatory cytokines such as IL-6.

Pancreatic cancer is anticipated to become the second deadliest cancer in the United States by 2030, surpassing breast and colon cancer. 

“Inflammation and a good immune response don’t always go hand in hand,” El-Rayes told us, for a 2018 Winship magazine article. “High IL-6 causes immune exhaustion, and keeps the good cells out of the tumor.”

Read more

Posted on by Quinn Eastman in Cancer Leave a comment

Marcus Lab researchers make key cancer discovery

A new discovery by Emory researchers in certain lung cancer patients could help improve patient outcomes before the cancer metastasizes.

The researchers in the renowned Marcus Laboratory identified that highly invasive leader cells have a specific cluster of mutations that are also found in non-small cell lung cancer patients. Leader cells play a dominant role in tumor progression, and the researchers discovered that patients with the mutations experienced poorer survival rates.

The findings mark the first leader cell mutation signature identified in patients and could prove key in teasing out high-risk patients, allowing oncologists to develop a treatment plan early on before the disease has progressed.

“It has been a lot of fun to see the research go from the basic science side inside the lab to hopefully having an actual clinical impact,” says Brian Pedro, an MD/PhD student in Emory’s Medical Scientist Training Program. “Our data suggest that if you have one or more of these mutations, then we could potentially intervene early and improve patient outcomes.”

Stopping leader cells before they metastasize has long been a goal of researchers at the Winship Cancer Institute. “That is what we strive for as researchers,” Pedro says. “We are optimistic that this could be a promising clinical tool.”

The findings were published in the American Cancer Society’s journal “Cancer.”

The researchers specifically found the novel mutation cluster on chromosome 16q and compared the survival rates of those who had the mutations with those who did not. The results showed the patients who had the mutations had poorer survival rates across all stages.

Pedro says more investigation is needed to figure out why the mutations lead to poorer outcomes. He adds that he hopes the mutation signature can prove useful for cancer types beyond lung cancer.

You can learn more from Pedro’s Tweetstorm.

 

Posted on by Wayne Drash in Cancer, Uncategorized Leave a comment

Targeting metastasis through metabolism

Research from Adam Marcus’ and Mala Shanmugam’s labs was published Tuesday in Nature Communications – months after we wrote an article for Winship Cancer Institute’s magazine about it. So here it is again!

At your last visit to the dentist, you may have been given a mouth rinse with the antiseptic chlorhexidine. Available over the counter, chlorhexidine is also washed over the skin to prepare someone for surgery. Winship researchers are now looking at chlorhexidine and its chemical relative alexidine for another purpose: stopping cancer metastasis.

While the researchers don’t envision using chlorhexidine mouthwash as an anti-cancer measure directly, their findings suggest ways to combine other drugs, already in clinical trials, in ways that could deplete the cells needed for metastasis.

When used as an antiseptic, chlorhexidine is basically a detergent that blasts bacteria apart, scientists think. As leads for potential anti-cancer agents, chlorhexidine and its relatives appear to have a different effect. They interfere with mitochondria, the miniature power plants in our cells. Cancer cells trying to metastasize and invade other tissues seem to need their mitochondria more—especially the cells that are leading the way. Read more

Posted on by Quinn Eastman in Cancer Leave a comment

Mapping the cancer genome wilderness

A huge cancer genome project has highlighted how DNA that doesn’t code for proteins is still important for keeping our cells on track.

The Pan-Cancer Analysis of Whole Genomes analyzed more than 2,600 tumors from 38 tissues, looking for causative mutations and patterns. Previous work had concentrated on the regions of the genome that code for proteins, but a significant proportion of cancer patients’ tumors don’t carry known “driver” (causative) mutations in protein-coding regions. So this project went out into what used to be called “junk DNA” or the “dark matter” of the genome.

Emory bioinformatics postdoc Matthew Reyna is the first author of one of 23 papers on the PCAWG project, published Feb. 5 in the Nature family of journals. His paper in Nature Communications looks at mutations in non-coding regions of the genome in tumors, analyzing which biological processes are affected.

Some of these were mutations in the promoters of genes encoding well-known cancer suppressors such as p53, but the project also identified new genes containing cancer-driving mutations. A promoter is the stretch of DNA that tells the cell “make RNA copies starting here”.

Reyna contributed to the project while he was at Princeton, working with Benjamin Raphael, and at Emory as well. More recently, he’s been investigating protein-protein interactions with Haian Fu, Andrey Ivanov and others as part of the Cancer Target Discovery and Development (CTD2) project.

Posted on by Quinn Eastman in Cancer Leave a comment

To fight cancer, mix harmless reovirus with ‘red devil’

A recent paper in Journal of Virology mixes tried-and-true cancer-fighting tactics with the exotic. Sort of a peanut-butter-and-chocolate story, but definitely not tasty!

The tried and true is doxorubicin (Adriamycin), the notorious ‘red devil’ chemotherapy drug, which has been around for decades. On the exotic side, we have oncolytic viruses – viruses retuned to attack cancer cells more than healthy cells. This idea finally made it to FDA approval in 2015 in the form of a re-engineered herpes virus directed against melanoma.

Bernardo Mainou’s lab in the Department of Pediatrics is combining both of these approaches together. He and his team are looking to supercharge reoviruses, a mostly harmless type of virus that has been adapted into an anticancer agent. A Canadian company has brought its reovirus forward into several cancer clinical trials, but its product has not gotten to the finish line.

In the JVI paper, graduate students Roxana Rodriguez-Stewart, Jameson Berry and their colleagues infected triple-negative breast cancer cells with a variety of reoviruses, in an effort to select for those that replicate better in those cells. They also looked for drugs that enhance viral infection of those cells, and landed on doxorubicin and related drugs. Doxorubicin is part of a class of anticancer drugs that inhibit topoisomerases, enzymes that unwind DNA as part of the process of replication.

Yesterday at the GDBBS graduate research symposium, Berry gave a talk about the next step: attaching the souped-up reovirus to doxorubicin.

Three varieties of reovirus were grown together in breast cancer cells to select for efficient replication. 

 

 

 

 

Posted on by Quinn Eastman in Cancer Leave a comment

Update on pancreatic cancer: images and clinical trial

In 2018, Winship magazine had a feature story on pancreatic cancer. Our team developed an illustration that we hoped could convey the tumors’ complex structure, which contributes to making them difficult to treat. Oncologist Bassel El-Rayes described how the tumors recruit other cells to form a protective shell.

“If you look at a tumor from the pancreas, you will see small nests of cells embedded in scar tissue,” he says. “The cancer uses this scar tissue as a shield, to its own advantage.”

With El-Rayes and fellow oncologist Walid Shaib, Greg Lesinski’s lab recently published a paper in JCI Insight. The point of the paper was to look at how chemotherapy changes immune activity in the tumor microenvironment, but we also get vivid images giving us a glimpse of those nests. It helps to view these images as large as possible, so please check them out at the journal’s site, which has no paywall.

Regions stained green are tumor-rich; red regions are immune cell-rich, and blue regions are rich in stromal cells (stellate/fibroblast cells). The goal is to get immune cells to envelop the tumors more, like in square 8.

The 2018 magazine story also laid out some of Lesinski’s and El-Rayes’ ideas.

Based on his lab’s recent success in animal models, Lesinski thinks that combining an immunotherapy drug with agents that stop IL-6 could pry open pancreatic cancers’ protective shells. In those experiments, the combination resulted in fewer stellate cells and more T cells in the tumors. Fortunately, a couple of “off-the-shelf” options, drugs approved for rheumatoid arthritis, already exist for targeting IL-6, Lesinski says.

On that theme, we noticed that a clinical trial was posted on clinicaltrials.gov in December that implements those proposals: “Siltuximab and Spartalizumab in Patients With Metastatic Pancreatic Cancer”. El-Rayes is the principal investigator, and it is not yet recruiting. Siltuximab is an antibody against IL-6 and spartalizumab is a second generation PD-1 inhibitor.

Update: The XL888 + pembrolizumab study mentioned in the article is also moving along, presented by Mehmet Akce at the Gastrointestinal Cancers Symposium.

Posted on by Quinn Eastman in Cancer Leave a comment

Immune outposts inside tumors predict post-surgery outcomes

The immune system establishes “forward operating bases”, or lymph node-like structures, inside the tumors of some patients with kidney and other urologic cancers, researchers at Winship Cancer Institute of Emory University have discovered.

From left to right: Carey Jansen, Nataliya Prokhnevska, Hadyn Kissick and Viraj Master

Patients with well-supported immune cells in their tumors are more likely to control their cancers’ growth for a longer time — findings that could guide treatment decisions after surgery for kidney cancer. In addition, ongoing work has found the observation is broadly applicable to many cancer types, and it could help researchers expand the dramatic but sparse benefits of cancer immunotherapy to more people.

The results were published Wednesday, Dec. 11 in Nature.

“We knew that if there are more T cells in a tumor, the patient is likely to respond better to cancer immunotherapy,” says lead author Haydn Kissick, PhD. “But we were looking at a more basic question: why do some tumors have lots of T cells in them, and others don’t?”

Kissick is assistant professor of urology and microbiology and immunology at Emory University School of Medicine, Emory Vaccine Center and Winship Cancer Institute. His lab collaborated with surgeons and oncologists at Winship to examine tumor samples removed from patients with kidney, prostate and bladder cancer.

CD8 T cells hunt down and eliminate intruders – in this case, cancer cells. In patients with high levels of CD8 T cells residing in their tumors, their immune systems appeared to be better trained to suppress cancer growth after surgery, when small numbers of cancer cells (micrometastases) may be lurking elsewhere in the body. The cancers of those who had lower levels of CD8 T cells tended to progress four times more quickly after surgery than those with higher levels.

The finding has important implications, says Viraj Master, MD, who performed most of the kidney cancer surgeries. In this situation, additional treatments are not performed unless or until kidney cancer reappears, says Master, who is Fray F. Marshall Chair and professor of urology at Emory University School of Medicine and Winship’s Director of Integrative Oncology and Survivorship.

“Even after potentially curative surgery for aggressive kidney cancers, a significant fraction of patients will experience cancer recurrence,” he says. “But with this information, we could predict more confidently that some people won’t need anything else, thus avoiding overtreatment. However, on the basis of these findings, for others who are at higher risk of recurrence, we could potentially scan at more regular intervals, and ideally, design adjuvant therapy trials.”

The findings also provide insights for scientists interested in how the immune system successfully controls some cancers, but with others, the T cells become increasingly exhausted and ineffective.

“This study may lead to new insights into why immunotherapy can be so effective in some cancer types, but rarely works in others such as prostate cancer, and may highlight a path forward for developing more effective immunotherapy treatments,” says Howard Soule, PhD, executive vice president and chief science officer for the Prostate Cancer Foundation, which supported the Winship team’s work.

Kissick and his colleagues were surprised to find “stem-like” T cells, or precursors of exhausted cells, inside tumor samples. Stem-like T cells are the ones that proliferate in response to cancer immunotherapy drugs, which can revive the immune system’s ability to fight the cancer.

Tumor sample with high level of T cell infiltration. Red = CD8, yellow = MHC class II, a sign of APCs

“Lymph nodes are like ‘home base’ for the stem-like T cells,” says Carey Jansen, an MD/PhD student who is the first author of the Nature paper. “We had expected that the stem-like cells would stay in lymphoid tissue and deploy other T cells to infiltrate and fight the cancer. But instead, the immune system seems to set up an outpost, or a forward base, inside the tumor itself.”

The researchers found that other immune cells called “antigen-presenting cells” or APCs, which are usually found within lymph nodes, can also be seen within tumors. APCs help the T cells figure out when and what to attack. Like high numbers of CD8 T cells, high numbers of APCs in tumors were also a predictor of longer progression-free survival in kidney cancer patients.

The APCs and the stem-like cells were usually together within the same “nests,” in a way that resemble how the two types of cells interact in lymph nodes. This relationship was apparent in kidney cancers and also in samples from prostate and bladder cancers.

“The question of how the stem-like cells get into a tumor was not answered, but we do think that the APCs support the stem-like cells and are necessary for their maintenance,” Kissick says. “Given that these are the cells responsive to cancer immunotherapy agents, focusing on the relationship between the APCs and the T cells within the tumors could be valuable.”

Additional co-authors include: graduate student Nataliya Prokhnevska, urology chair Martin Sanda, MD and biostatistician Yuan Liu, PhD.

The research was supported by the National Cancer Institute (R00CA197891, U01CA113913), the Prostate Cancer Foundation, Swim Across America, the James M. Cox Foundation, James C. Kennedy, the Dunwoody Country Club Senior Men’s Association and an educational grant from Adaptive Technologies.

 

 

Posted on by Quinn Eastman in Cancer, Immunology Leave a comment

Beyond birthmarks and beta blockers, to cancer prevention

Ahead of this week’s Morningside Center conference on repurposing drugs, we wanted to highlight a recent paper in NPJ Precision Oncology by dermatologist Jack Arbiser. It may represent a new chapter in the story of the beta-blocker propranolol.

Infantile hemangioma (stock photo)

Several years ago, doctors in France accidentally discovered that propranolol is effective against hemangiomas: bright red birthmarks made of extra blood vessels, which appear in infancy. Hemangiomas often don’t need treatment and regress naturally, but some can lead to complications because they compromise other organs. Infants receiving propranolol require close monitoring to ensure that they do not suffer from side effects related to propranolol’s beta blocker activity, such as slower heart rate or low blood sugar.

Arbiser’s lab showed that only one of two mirror-image forms of propranolol is active against endothelial or hemangioma cells, but it is the inactive one, as far as being a beta-blocker. Many researchers were already looking at repurposing propranolol based on its anti-cancer properties. The insight could be a way to avoid beta-blocker side effects, even beyond hemangiomas to malignant tumors. Check out the Office of Technology Transfer’s feature on this topic. Read more

Posted on by Quinn Eastman in Cancer Leave a comment
1 2 3 4 5 6 7 8 9 10 11   Next »