Mouse version of 3q29 deletion: insights into schizophrenia/ASD pathways

Emory researchers see investigating 3q29 deletion as a way of unraveling schizophrenia’s biological and genetic Read more

B cells off the rails early in lupus

Emory scientists could discern that in people with SLE, signals driving expansion and activation are present at an earlier stage of B cell differentiation than previously Read more

Head to head narcolepsy/hypersomnia study

At the sleep research meeting in San Antonio this year, there were signs of an impending pharmaceutical arms race in the realm of narcolepsy. The big fish in a small pond, Jazz Pharmaceuticals, was preparing to market its recently FDA-approved medication: Sunosi/solriamfetol. Startup Harmony Biosciences was close behind with pitolisant, already approved in Europe. On the horizon are experimental drugs designed to more precisely target the neuropeptide deficiency in people with classic narcolepsy type 1 Read more

Cancer

Anti-inflammatory approach suppresses cancer metastasis in animal models

An anti-inflammatory drug called ketorolac, given before surgery, can promote long-term survival in animal models of cancer metastasis, a team of scientists has found. The research suggests that flanking chemotherapy with ketorolac or similar drugs — an approach that is distinct from previous anti-inflammatory cancer prevention efforts — can unleash anti-tumor immunity.

The findings, published in Journal of Clinical Investigation, also provide a mechanistic explanation for the anti-metastatic effects of ketorolac, previously observed in human breast cancer surgery.

Medical writer Ralph Moss has a great summary of this background. A commentary accompanying the JCI paper concludes: ” If this can be translated from mouse models into the clinic, then it could revolutionize treatments.”

Vikas P. Sukhatme, MD, ScD, dean of Emory University School of Medicine, is senior author of the JCI paper. He was previously at Beth Israel Deaconess Medical Center and Harvard Medical School, with lead authors Dipak Panigrahy, MD and Allison Gartung, PhD.

“Collectively, our findings suggest a potential paradigm shift in our approach to resectable cancers,” says Sukhatme. “Clinical trials are now urgently needed to validate these animal studies.”

Most cancer-related deaths come from metastases, the spread of cancer cells from a primary tumor to surrounding tissues or distant organs. The cells that seed metastases are often in microscopic clusters – a surgeon can’t see them. Chemotherapy, typically given after or prior to surgery is aimed at eradicating these cancer cells in the hopes of preventing cancer recurrence.  However, chemotherapy can sometimes stir up inflammation, promoting metastasis.

“Cancer therapy is a double-edged sword,” says Panigrahy. “Surgery and chemotherapy can induce an inflammatory or immunosuppressive injury response that promotes dormant metastatic cells to start proliferating, leading to tumor recurrence.”

Ketorolac is an inexpensive NSAID (nonsteroidal anti-inflammatory drug). Because of concern over side effects, it is only approved by the FDA for short-term pain management “at the opioid level.” It differs from other NSAIDs in that it preferentially inhibits the enzyme COX-1, more than COX-2. Other studies of prevention of cancer recurrence have focused on COX-2 inhibitors. Read more

Posted on by Quinn Eastman in Cancer Leave a comment

I3 Venture awards info

Emory is full of fledgling biomedical proto-companies. Some of them are actual corporations with employees, while others are ideas that need a push to get them to that point. Along with the companies highlighted by the Emory Biotech Consulting Club, Dean Sukhatme’s recent announcement of five I3 Venture research awards gives more examples of early stage research projects with commercial potential.

This is the third round of the I3 awards; the first two were Wow! (basic discovery) and Synergy II/Nexus (promoting interdisciplinary collaboration). For the five Venture awards, the Dean’s office is providing a total of $100,000. The companies will then use the momentum to seek larger amounts of funding from various sources. Lab Land is still collecting information on the projects:

 

Faculty Name Technology Relevant links
Ray Dingledine + Thota Ganesh Pyrefin EP2 receptor antagonists vs epilepsy, pain, inflammation New class of potential drugs inhibits inflammation in brain
Mark Goodman, W. Robert Taylor Microbial Medical PET imaging agent for detection of bacterial infections Spoonful of sugar helps infection detection
Carlos Moreno + Christian Larsen ResonanceDx Miniaturized rapid creatinine test for point of care use  
Edmund Waller + Taofeek Owonikoko Cambium Oncology Enhancing responsiveness of pancreatic cancer to immunotherapy The Company’s lead compound was effective in animal studies for pancreatic cancer, melanoma, leukemia and lymphoma.
Chunhui Xu TK High-throughput screening for antiarrhythmic drugs using cardiomyocytes Fetal alcohol toxicity – in a dish // Cardiac ‘disease in a dish’ models advance arrhythmia research
Posted on by Quinn Eastman in Cancer, Immunology, Neuro Leave a comment

Fighting cancer with combinatorial imagination

In his undergraduate days, Winship Cancer Institute dermatologist and cancer researcher Jack Arbiser was an organic chemist. That may be why he recognized an organic synthesis reagent based on the metal palladium as a potential anti-cancer drug.

We’re talking about Tris-DBA-palladium. Arbiser and colleagues showed in a 2008 Clinical Cancer Research paper that this deep purple stuff (see photo) is active against melanoma, and since then, against other types of cancer such as pancreatic cancer, multiple myeloma, and CLL leukemia.

Tris-DBA-PD has a deep purple color. The palladium atoms can be seen in the diagram as two blue balls at the center. From Wikipedia.

Since it’s used in organic synthesis, you might expect Tris-DBA-palladium not to be very soluble in water. A new paper in Scientific Reports demonstrates that this issue can be addressed by hooking up the reagent to nanoparticles made of hyaluronic acid, which targets tumor cells. They are effective against melanoma in mice, the paper shows.

“We have already demonstrated that Tris DBA palladium by itself has activity against melanoma in mice,” Arbiser writes (in his VA grant summary). “However, we believe that we can make Tris DBA palladium into an even more powerful drug by adding it to nanoparticles that are guided to the tumor.”

In an email to Lab Land, Arbiser says he arrived at Tris-DBA-palladium by using his chemist’s imagination, in a “your chocolate landed in my peanut butter” kind of way.

“I got the idea for looking at this compound because it is a complex of Pd with a curcumin-like structure, and I figured it might have the characteristics of platinum and curcumin together,” he says. Read more

Posted on by Quinn Eastman in Cancer Leave a comment

CAPTCHA some cancer cells

Humans are good at deciphering complex images, compared to computers. Until recently, internet users often needed to verify that they were human by completing a CAPTCHA security check. A familiar variety asked the user to check all the boxes that contain a car, or a street sign.

If we asked random people off the street to look at pathology slides and “quick, check all the boxes that contain tumor cells,” what would happen? The accuracy, compared to a trained pathologist, wouldn’t be very good.

Not as easy as labeling which boxes contain street signs!

This challenge of expertise – crowdsourcing and pathology are not immediately compatible – is what Lee Cooper and colleagues sought to overcome in a recent paper published in Bioinformatics. So they put together something they called “structured crowdsourcing.”

“We are interested in describing how the immune system behaves in breast cancers, and so we built an artificial intelligence system to look at pathology slides and identify the tissue components,” Cooper says.

His group was particularly interested in the aggressive form of breast cancer: triple negative. They used pathology slide images from the Cancer Genome Atlas, a National Cancer Institute resource. The goal was to mark up the slides and label which sections contained tumor, stroma, white blood cells, dead cells etc.

They used social media to recruit 25 volunteers — medical students and pathologists from around the world (Egypt, Bangladesh, Saudi Arabia, United Arab Emirates, Syria, USA). Participants underwent training and used Slack to communicate and learn about how to classify images. They collaborated using the Digital Slide Archive, a tool developed at Emory. Read more

Posted on by Quinn Eastman in Cancer Leave a comment

Overcoming cisplatin resistance

Despite being studied for decades, the chemotherapy drug cisplatin is revealing new aspects of how it works. Researchers at Winship Cancer Institute of Emory University have identified an enzyme responsible for making tumors and cancer cell lines resistant to cisplatin, along with an experimental drug that targets that enzyme.

The results were published on July 19 in Cancer Cell.

Winship researcher Sumin Kang, PhD

Cisplatin is a DNA-damaging agent used in standard treatment for lung, head and neck, ovarian, and testicular cancers. It has a simple structure, grabbing DNA with its metallic (platinum) arms to form crosslinks. It used to be known as “cis-flatten” because of its nausea-inducing side effects. The experimental drug, lestaurtinib, has already been tested in clinical studies in combination with other chemotherapy drugs, which means it could easily go into trials against tumors displaying cisplatin resistance.

Sumin Kang, PhD, and colleagues at Winship decided to look for enzymes whose activity was necessary for cancer cells to withstand cisplatin treatment. They chose kinases, enzymes that often control some aspect of cell growth and are have plenty of existing drugs targeting them. The researchers found that in combination with a sub-lethal amount of cisplatin, “knocking down” the activity of the kinase MAST1 kills a cell. But how does that combination work?

Read more

Posted on by Quinn Eastman in Cancer Leave a comment

Nox-ious link to cancer Warburg effect

At Emory, Kathy Griendling’s group is well known for studying NADPH oxidases (also known as Nox), enzymes which generate reactive oxygen species. In 2009, they published a paper on a regulator of Nox enzymes called Poldip2. Griendling’s former postdoc, now assistant professor, Alejandra San Martin has taken up Poldip2.

Griendling first came to Nox enzymes from a cardiology/vascular biology perspective, but they have links to cancer. Nox enzymes are multifarious and it appears that Poldip2 is too. As its full name suggests, Poldip2 (polymerase delta interacting protein 2) was first identified as interacting with DNA replication enzymes.  Poldip2 also appears in mitochondria, indirectly regulating the process of lipoylation — attachment of a fatty acid to proteins anchoring them in membranes. That’s where a recent PNAS paper from San Martin, Griendling and colleagues comes in. It identifies Poldip2 as playing a role in hypoxia and cancer cell metabolic adaptation.

Part of the PNAS paper focuses on Poldip2 in triple-negative breast cancer, more difficult to treat. In TNBC cells, Poldip2’s absence appears to be part of the warped cancer cell metabolism known as the Warburg effect. Lab Land has explored the Warburg effect with Winship’s Jing Chen.

Posted on by Quinn Eastman in Cancer, Heart Leave a comment

Exotic immune systems are big business

What timing! Just when our feature on Max Cooper and lamprey immunology was scheduled for publication, the Japan Prize Foundation announced it would honor Cooper and his achievements.

Cooper was one of the founders of modern immunology. We connect his early work with his lab’s more recent focus on lampreys, primitive parasites with surprisingly sophisticated immune systems.

Molecules from animals with exotic immune systems can be big business, as Andrew Joseph from STAT News points out. Pharmaceutical giant Sanofi recently bought a company focused on nanobodies, originally derived from camels, llamas and alpacas, for $4.8 billion.

Lampreys’ variable lymphocyte receptors (VLRs) are their version of antibodies, even though they look quite different in molecular terms. Research on VLRs and their origins may seem impractical. However, Cooper’s team has shown their utility as diagnostic tools, and his colleagues have been weaponizing them, possibly for use in cancer immunotherapy.

CAR-T cells have attracted attention for dramatic elimination of certain types of leukemias from the body and also for harsh side effects and staggering costs; see this opinion piece by Georgia Tech’s Aaron Levine. Now many research teams are scheming about how to apply the approach to other types of cancers. The provocative idea is: replace the standard CAR (chimeric antigen receptor) warhead with a lamprey VLR.

Read more

Posted on by Quinn Eastman in Cancer, Immunology Leave a comment

Navigating monstrous anticancer obstacles

A new PNAS paper from geneticist Tamara Caspary’s lab identifies a possible drug target in medulloblastoma, the most common pediatric brain tumor. Come aboard to understand the obstacles this research seeks to navigate. Emory library link here.

Standard treatment for children with medulloblastoma consists of surgery in combination with radiation and chemotherapy. Alternatives are needed, because survivors can experience side effects such as neurocognitive impairment. One possibility has emerged in the last decade: inhibitors of the Hedgehog pathway, whose aberrant activation drives growth in medulloblastoma.

Medulloblastoma patients are caught “between Scylla and Charybdis”: facing a deadly disease, the side effects of radiation and/or existing Hedgehog inhibitors. From Wikimedia.

As this 2017 Oncotarget paper from St. Jude’s describes, Hedgehog inhibitors are no fun either. In adults, these agents cause muscle spasms, hair loss, distorted sense of taste, fatigue, and weight loss. In a pediatric clinical trial, the St. Jude group observed growth plate fusions, resulting in short stature. The drug described in the paper was approved in 2012 for basal cell carcinoma, a form of cancer whose growth is also driven by the Hedgehog pathway. Basal cell carcinoma is actually the most common form of human cancer, although it is often caught at an early stage that doesn’t require harsh treatment.

Caspary’s lab studies the Hedgehog pathway in early embryonic development. In the PNAS paper, former graduate student Sarah Bay and postdoc Alyssa Long show that targeting a downstream part of the Hedgehog pathway may be a way to avoid problems presented by both radiation/chemo and existing Hedgehog inhibitors. Read more

Posted on by Quinn Eastman in Cancer, Neuro Leave a comment

A sickly sweet anticancer drug

Cancer cells are well known for liking the simple sugar glucose. Their elevated appetite for glucose is part of the Warburg effect, a metabolic distortion that has them sprinting all the time (glycolysis) despite the presence of oxygen.

A collaboration between researchers at Winship Cancer Institute, Georgia State and University of Mississippi has identified a potential drug that uses cancer cells’ metabolic preferences against them: it encourages the cells to consume so much glucose it makes them sick.

Their findings were published in Oncotarget. Read more

Posted on by Quinn Eastman in Cancer Leave a comment

Exosomes as potential biomarkers of radiation exposure

Kishore Kumar Jella, PhD

Winship Cancer Institute postdoc Kishore Kumar Jella has been invited to speak at the NATO advanced research workshop BRITE (Biomarkers of Radiation In the Environment): Robust tools for Risk Assessment in Yerevan, Armenia, on 28-30 November, 2017. The workshop brings together leading international experts to evaluate currently and developing radiation biomarkers for environmental applications.

Jella works in the Departments of Biochemistry and Radiation Oncology under the direction of Professors William S. Dynan and Mohammad K. Khan. He will speak on “Exosomes as Radiation Biomarkers”. He will describe how radiation influences exosome production and how these exosomes influence the immune system. The work has applications both to radiation carcinogenesis and combination radio-immunotherapy.

Jella is supported in part by a grant from the National Aeronautics and Space Administration to Dynan.

Exosomes are nano-sized membrane-clothed capsules containing proteins and RNA that are thought to facilitate cell-cell communcation. They were previously implicated in the ability of cancer cells to influence healthy neighbor cells, and have also been proposed as anti-cancer therapeutic vehicles. Jella’s previous research on exosomes and radiation-induced bystander signaling was published in Radiation Research in 2014.

Posted on by Quinn Eastman in Cancer Leave a comment
1 2 3 4 5 6 7 8 9 10   Next »