Genomics plus human intelligence

The power of gene sequencing to solve puzzles when combined with human Read more

'Master key' microRNA has links to both ASD and schizophrenia

Recent studies of complex brain disorders such as schizophrenia and autism spectrum disorder (ASD) have identified a few "master keys," risk genes that sit at the center of a network of genes important for brain function. Researchers at Emory and the Chinese Academy of Sciences have created mice partially lacking one of those master keys, called MIR-137, and have used them to identify an angle on potential treatments for ASD. The results were published this Read more

Shape-shifting RNA regulates viral sensor

OAS senses double-stranded RNA: the form that viral genetic material often takes. Its regulator is also Read more

Neuro

‘Master key’ microRNA has links to both ASD and schizophrenia

Recent studies of complex brain disorders such as schizophrenia and autism spectrum disorder (ASD) have identified a few “master keys,” risk genes that sit at the center of a network of genes important for brain function. Researchers at Emory and the Chinese Academy of Sciences have created mice partially lacking one of those master keys, called MIR-137, and have used them to identify an angle on potential treatments for ASD.

The results were published this week in Nature Neuroscience.

Mice partially lacking MIR-137 display learning and memory deficits, repetitive behaviors and impaired sociability. MIR-137 encodes a microRNA, which regulates hundreds of other genes, many of which are also connected to schizophrenia and autism spectrum disorder.

By treating mutant mice with papaverine, a vasodilator discovered in the 19th century, scientists could improve the performance of the mice on maze navigation and social behavior tests. Papaverine is an inhibitor of the enzyme Pde10a (phosphodiesterase 10a), which is elevated in mutant mice.

Papaverine is a component of opium, but it has a structure (and effects) that are different from opiates.

Other Pde10a inhibitors have been tested in schizophrenia clinical trials, but the new results suggest this group of compounds could have potential for some individuals with ASD, says senior author Peng Jin, PhD, professor of human genetics at Emory University School of Medicine.

Having just the right level of MIR-137 function is important. Previous studies of people with genetic deletions show that a loss of MIR-137 is connected with intellectual disability and autism spectrum disorder. The reverse situation, in which a genetic variation increases MIR-137 levels, appears to contribute to schizophrenia.

“It’s interesting to think about in the context of precision medicine,” Jin says. “Individuals with a partial loss of MIR137 – either genomic deletions or reduced expression — could potentially be candidates for treatment with Pde10a inhibitors.”

To create the mutant mice, Jin’s lab teamed up with Dahua Chen, PhD and Zhao-Qian Teng, PhD scientists at the State Key Laboratories of Stem Cell and Reproductive Biology and Membrane Biology, part of the Institute of Zoology, Chinese Academy of Sciences in Beijing. Jin says that generating mice with a heritable disruption of MIR-137 was technically challenging, taking several years. Read more

Posted on by Quinn Eastman in Neuro Leave a comment

Cells in “little brain” have distinctive metabolic needs

Cells’ metabolic needs are not uniform across the brain, researchers have learned. “Knocking out” an enzyme that regulates mitochondria, cells’ miniature power plants, specifically blocks the development of the mouse cerebellum more than the rest of the brain.

The results were published in Science Advances.

“This finding will be tremendously helpful in understanding the molecular mechanisms underlying developmental disorders, degenerative diseases, and even cancer in the cerebellum,” says lead author Cheng-Kui Qu, MD, PhD, professor of pediatrics at Emory University School of Medicine, Winship Cancer Institute and Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta.

The cerebellum or “little brain” was long thought to be involved mainly in balance and complex motor functions. More recent research suggests it is important for decision making and emotions. In humans, the cerebellum grows more than the rest of the brain in the first year of life and its development is not complete until around 8 years of age. The most common malignant brain tumor in children, medulloblastoma, arises in the cerebellum.

Qu and his colleagues have been studying an enzyme, PTPMT1, which controls the influx of pyruvate – a source of energy derived from carbohydrates – into mitochondria. They describe pyruvate as “the master fuel” for postnatal cerebellar development.

Cells can get energy by breaking down sugar efficiently, through mitochondria, or more wastefully in a process called glycolysis. Deleting PTPMT1 provides insight into which cells are more sensitive to problems with mitochondrial metabolism. A variety of mitochondrial diseases affect different parts of the body, but the brain is especially greedy for sugar; it never really shuts off metabolically. When someone is at rest, the brain uses a quarter of the body’s blood sugar, despite taking up just 2 percent of body weight in an adult. More here.

Also, see this 2017 item from Stanford on the cerebellum (Nature paper).

Posted on by Quinn Eastman in Neuro Leave a comment

Fragile X files — expanded

A genetic disorder caused by silencing of a gene on the X chromosome, fragile X syndrome affects about one child in 5,000, and is more common and more severe in boys. It often causes mild to moderate intellectual disabilities as well as behavioral and learning challenges.

Amy Talboy, MD

The gene responsible for fragile X syndrome, the most common inherited form of intellectual disability, was identified more than 25 years ago. Emory genetics chair Stephen Warren played a major role in achieving that milestone. His work led to insights into the molecular details of learning and memory, and nationwide clinical trials — which have a more complicated story.

Treating the molecular basis of a neurodevelopmental disorder, instead of simply addressing symptoms, is a lofty goal – one that remains unfulfilled. Now a new study, supported by the National Institute of Neurological Disorders and Stroke, is reviving a pharmacological strategy that Warren had a hand in developing.

“This is a very well thought out approach to studying changes in language and learning in children who are difficult to test,” says Amy Talboy, medical director of Emory’s Down Syndrome and Fragile X clinics, who is an investigator in the NINDS study. “It could change how we conduct these types of studies in the future.” Read more

Posted on by Quinn Eastman in Neuro Leave a comment

MSCs: what’s in a name?

At a recent symposium of cellular therapies held by the Department of Pediatrics, we noticed something. Scientists do not have consistent language to talk about a type of cells called “mesenchymal stem cells” or “mesenchymal stromal cells.” Within the same symposium, some researchers used the first term, and others used the second.

Guest speaker Joanne Kurtzberg from Duke discussed the potential use of MSCs to treat autism spectrum disorder, cerebral palsy, and hypoxic-ischemic encephalopathy. Exciting stuff, although the outcomes of the clinical studies underway are still uncertain. In these studies, the mesenchymal stromal cells (the language Kurtzberg used) are derived from umbilical cord blood, not adult tissues.

Nomenclature matters, because a recent editorial in Nature calls for the term “stem cell” not to be used for mesenchymal (whatever) cells. They are often isolated from bone marrow or fat. MSCs are thought have the potential to become cells such as fibroblasts, cartilage, bone and fat. But most of their therapeutic effects appear to come from the growth factors and RNA-containing exosomes they secrete, rather than their ability to directly replace cells in damaged tissues.

The Nature editorial argues that “wildly varying reports have helped MSCs to acquire a near-magical, all-things-to-all-people quality in the media and in the public mind,” and calls for better characterization of the cells and more rigor in clinical studies.

At Emory, gastroenterologist Subra Kugathasan talked about his experience with MSCs in inflammatory bowel diseases. Hematologist Edwin Horwitz discussed his past work with MSCs on osteogenesis imperfecta. And Georgia Tech-based biomedical engineer Krishnendu Roy pointed out the need to reduce costs and scale up, especially if MSCs start to be used at a higher volume.

Several of the speakers were supported by the Marcus Foundation, which has a long-established interest in autism, stroke, cerebral palsy and other neurological conditions.

Posted on by Quinn Eastman in Heart, Immunology, Neuro Leave a comment

The time Anna stayed up all night

Almost precisely a decade ago, a young Atlanta lawyer named Anna was returning to work, after being treated for an extraordinary sleep disorder. Her story has been told here at Emory and by national media outlets.

Fast forward a decade to Idiopathic Hypersomnia Awareness Week 2018 (September 3-9), organized by Hypersomnolence Australia. What this post deals with is essentially the correction of a date at the tail end of Anna’s story, but one with long-term implications for many people with difficult-to-treat sleep disorders.

In the summer of 2008, Anna Sumner (now Pieschel) was planning on getting back to her life and career. A few years before, she had been diagnosed with a condition with a frustrating name: idiopathic hypersomnia. It means “she sleeps a lot and we don’t know why.”

Neurologist David Rye and nurse practitioner Kathy Parker had treated Anna first with conventional stimulants, which were spectacularly unsatisfactory. See this 2013 Emory Medicine story for details. Parker and Rye eventually landed on something less conventional: flumazenil, an antidote for sedatives that was scarce and difficult to administer. After wrangling with the FDA and with flumazenil’s manufacturer, a longer-term solution came into view. At that time, Anna was unique: the only person taking flumazenil chronically for a sleep disorder.

Then she developed bronchitis. She lost her voice, which was a problem for someone whose professional role sometimes takes her to court. To treat her bronchitis, Anna’s internist had prescribed the antibiotic clarithromycin, known commercially as Biaxin. After taking it, she developed insomnia and couldn’t sleep for three days. She left frantic messages for neurologist Lynn Marie Trotti, who had become her main sleep specialist.

“This had never happened to me before,” she recalled recently. “I was concerned that it was some bizarre individual reaction to the medication.”

In our original Emory Medicine story, this event was described as taking place in 2010. That date was incorrect.  Read more

Posted on by Quinn Eastman in Neuro Leave a comment

Why is it so hard to do good science?

Last week, Lab Land put out a Twitter poll, touching on the cognitive distortions that make it difficult to do high-quality science. Lots of people (almost 50) responded! Thank you!

We had to be vague about where all this came from, because it was before the publication of the underlying research paper. Ray Dingledine, in Emory’s Department of Pharmacology, asked us to do the Twitter poll first, to see what answers people would give. Dingledine’s paper in eNeuro is now published, so we can explain.

Raymond Dingledine, PhD

The paper is titled “Why Is It So Hard To Do Good Science?” Basically, Dingledine argues, our cognitive biases get in the way. eNeuro summarizes the take-home message this way: “Improving experimental design and statistical analyses alone will not solve the reproducibility crisis in science.”

When designing their experiments, Dingledine says, scientists need to take account of “the law of small numbers”—the distortions random variation can introduce when sample sizes are small – along with other cognitive biases.

In the 1960s and 1970s, psychologists Daniel Kahneman and Amos Tversky demonstrated that people tend to engage in “fast thinking” — relying on preconceived notions and emotions — when making decisions in the face of new information. In his update of this research, Dingledine found that scientists of all career stages are subject to the same biases as undergraduates when interpreting data.

The findings reinforce the roles that two inherent intuitions play in scientific decision-making: our drive to create a coherent narrative from new data regardless of its quality or relevance, and our inclination to seek patterns in data whether they exist or not. Moreover, we do not always consider how likely a result is regardless of its P-value. Read more

Posted on by Quinn Eastman in Neuro Leave a comment

When parents de-stress, so do offspring

Parents around the world can relax, knowing that their kids won’t inherit all of their stresses — at least at the DNA or epigenetic level. In an animal model, neuroscientists at Yerkes National Primate Research Center have shown they can reverse influences of parental stress by exposing parents to behavioral interventions following their own exposure to stress.

“These results in our mouse model are an important public health contribution because they provide optimism for applying similar interventional approaches in humans and breaking intergenerational cycles of stress,” says lead author Brian Dias. More information here.

The research was published in Biological Psychiatry, and is a continuation of Dias’ work with Kerry Ressler on this topic, which earned some attention in 2013. Note: the mice weren’t inheriting a fear as much as a sensitivity to a smell. Even so, it remains an intriguing example of how transgenerational (um, since the word “epigenetic” is so stretchy now) influences can be studied in a precise molecular way.

Read more

Posted on by Quinn Eastman in Neuro Leave a comment

Looking ahead to new opioid treatments

Stephanie Foster sees herself one day specializing in addiction psychiatry. When she started her MD/PhD studies at Emory, she sought out neuroscientist David Weinshenker to discuss research projects. She is now examining potential treatments for opiate addiction based on galanin, a neuropeptide found in the brain.

Weinshenker and his colleagues had already been studying galanin in relation to stimulants such as cocaine. Preliminary studies in animals indicate that activating galanin signals might reduce the rewarding effects of opiates, withdrawal symptoms, and relapse-like behavior.

“This was a whole new direction that looked promising,” Foster says. “But first, we have to work out the brain circuitry.”

Foster comes from a Native American background, and has a long-range plan to work in the Indian Health Service. The death rate of Native Americans from opiate overdoses is the highest of any American population group, according to the Centers for Disease Control and Prevention. She would like to establish a research lab in a region of the country where she could continue her addiction research and also work closely with Native communities.

Screenshot from NIH reporter (grant database). F31 grants for year 2018.

Last year, Foster applied for and received an individual grant from the National Institute on Drug Abuse to support her work. Emory currently leads U.S. universities in the number of graduate students holding their own active grants from the National Institutes of Health. This reflects a multi-year effort to build instruction in critical parts of scientific life: planning and communicating about one’s work.

With opiate addiction, convincing others that the topic is worthwhile is not so difficult. Foster notes that few treatments are available for the early stages of opiate addiction. Long-lasting opiate substitutes/replacements such as methadone and buprenorphine are used once dependence has set in, and another medication, lofexidine, was recently approved for acute withdrawal symptoms.

“There isn’t really anything for people before they reach that stage,” Foster says. “Our idea is to look for an intervention that could be given earlier.” Read more

Posted on by Quinn Eastman in Neuro Leave a comment

Mysterious DNA modification important in fly brain

Emory scientists have identified a function for a mysterious DNA modification in fruit flies’ brain development, which may provide hints to its role in humans.

The results were published Thursday, August 2 in Molecular Cell.

Epigenetics may mean “above the genes,” but a lot of the focus in the field is on DNA methylation, a chemical modification of DNA itself. Methylation doesn’t change the actual DNA letters (A, C, G and T), but it does change how DNA is handled by the cell. Generally, it shuts genes off and is essential for cell differentiation.

The most commonly studied form of DNA methylation appears on the DNA letter C (cytosine). Drosophila, despite being a useful genetic model of development, have very little of this form of DNA methylation. What they do have is methylation on A — technically, N6-methyladenine, although little was known about what this modification did for flies.

Editor’s note: See this 2017 Nature feature from Cassandra Willyard on an “epigenetics gold rush”, which mentions the discovery of N6-methyladenine’s presence in the genomes of several organisms.

Emory geneticists Bing Yao, PhD, Peng Jin, PhD and colleagues now have shown that an enzyme that removes methylation from A is critical for neuronal development in Drosophila.

This finding is significant because the enzyme is in the same family (TET for ten-eleven translocation) of demethylases that trigger removal of DNA methylation from C in mammals. The function of TET enzymes, revealing that cells actively removed DNA methylation rather than just letting it slough off, was discovered only in 2009. Read more

Posted on by Quinn Eastman in Neuro Leave a comment

Fragile X: preclinical portfolio for PI3k drug strategy

Research in mice shows that a pharmacological strategy can alleviate multiple behavioral and cellular deficiencies in a mouse model of fragile X syndrome (FXS), the most common inherited form of intellectual disability and a major single-gene cause of autism spectrum disorders.

The results were published online last week by Neuropsychopharmacology, and were presented at the NFXF International Fragile X Conference in Cincinnati.

When the compound GSK6A was given to mice lacking the Fmr1 gene, an established animal model of fragile X syndrome, it relieved symptomatic behaviors, such as impaired social interactions and inflexible decision making, which can be displayed by humans with fragile X syndrome.

The findings indicate that treatment with GSK6A or a similar compound could be a viable strategy for addressing cognitive and behavioral problems in fragile X syndrome; this would need to be tested directly in clinical trials. GSK6A inhibits one particular form of a cellular signaling enzyme: the p110β form of PI3 (phosphoinositide-3) kinase. A closely related p110β inhibitor is already in clinical trials for cancer.

Video from the iBook “Basic Science Breakthroughs: Fragile X Syndrome”. Narration by Emory genetics chair Stephen Warren, whose team identified the gene responsible for fragile X.

“Our results suggest that p110β inhibitors can be repurposed for fragile X syndrome, and they have implications for other subtypes of autism spectrum disorders that are characterized by similar alterations of this pathway,” says Gary Bassell, PhD, professor and chair of cell biology at Emory University School of Medicine.

“Right now, no proven efficient treatments are available for fragile X syndrome that are targeted to the disease mechanism,” says Christina Gross, PhD, from Cincinnati Children’s. “We think that p110β is an appropriate target because it is directly regulated by FMRP, and it is overactivated in both mouse models and patient cell lines.”

The paper represents a collaboration between three laboratories: two at Emory led by Bassell and Shannon Gourley, PhD, and one at Cincinnati Children’s, led by Gross. Gourley is based at Yerkes National Primate Research Center; see this earlier item on her collaboration with Bassell here.

While the researchers are discussing clinical trials of p110β inhibitors in fragile X syndrome, they say that long-term studies in animals are needed to ensure that undesirable side effects do not appear. More here.

With respect to clinical trials, the fragile X community has been disappointed before. Based on encouraging studies in mouse models, drugs targeting mGluR5 glutamate receptors were tested in adolescents and adults. mGluR5 drugs did not show clear benefits; recent re-evaluation suggests the choice of outcome measures, the ages of study participants and drug tolerance may have played a role.

Warren played a major role in developing the mGluR5 approach and Emory investigators were part of those studies. More recently, clinical trials for one of the mGluR5 medications were revived in younger children and Emory is a participating site. Also, see this 2016 discussion in Spectrum with Elizabeth Berry-Kravis on the fragile X mouse model; Bassell, Gross and Gourley have made some inroads on the limitations Berry-Kravis describes.

Posted on by Quinn Eastman in Neuro Leave a comment
1 2 3 4 5 6 7 8 9 10 ... 20 21   Next »