Before the cardiologist goes nuclear w/ stress #AHA17

Measuring troponin in CAD patients before embarking on stress testing may provide Read more

Virus hunting season open

Previously unknown viruses, identified by Winship + UCSF scientists, come from a patient with a melanoma that had metastasized to the Read more

#AHA17 highlight: cardiac pacemaker cells

Highlighting new research on engineering induced pacemaker cells from Hee Cheol Cho's Read more

Immunology

Skin disease studies go deep: depression/inflammation insight

The placebo effect plays a big role in clinical trials for mood disorders such as depression. Emory psychiatrist Andy Miller hit upon something several years ago that could clear a path around the placebo effect.

Miller and his colleagues have been looking at the connection between inflammation and depression, whose evolutionary dimensions we have previously explored. They’ve examined the ability of inflammation-inducing treatments for hepatitis C and cancer to trigger symptoms of depression, and have shown that the anti-inflammatory drug infliximab (mainly used for rheumatoid arthritis) can resolve some cases of treatment-resistant depression. [Lots of praise for Miller in this September 2017 Nature Medicine feature.]

A recent paper in Psychotherapy and Psychosomatics from Miller and psychiatry chair Mark Rapaport looks at clinical trials testing an anti-inflammatory drug against psoriasis, to see whether participants’ depressive symptoms improved. This sidesteps a situation where doctors’ main targets are the patients’ moods.

When it comes to approving new antidepressants, the FDA is still probably going to want a frontal assault on depression, despite provisions in the 21st Century Cures Act to broaden the types of admissible evidence.

“These studies emphasize how difficult it is to interpret findings when these drugs are treating more than one problem,” Miller says. “Better to have a simpler study with just depression.”

Still, this line of research could clarify who could benefit from anti-inflammatory treatments and illuminate viable biomarkers and pathways. Two studies now underway at Emory specifically recruit patients with high levels of the inflammatory marker CRP, which Miller’s previous study showed was helpful in predicting response to infliximab.

The new paper results from a collaboration with Eli Lilly. Lilly’s ixekizumab (commercial name: Taltz) is an antibody against the cytokine IL-17A, used to treat moderate to severe psoriasis. Taltz was approved by the FDA in 2016, after clinical trials published in the New England Journal of Medicine. Read more

Posted on by Quinn Eastman in Immunology, Neuro Leave a comment

New insight into how brain cells die in Alzheimer’s and FTD

Removal of a regulatory gene called LSD1 in adult mice induces changes in gene activity that look unexpectedly like Alzheimer’s disease, scientists have discovered.

Researchers also discovered that LSD1 protein is perturbed in brain samples from humans with Alzheimer’s disease and frontotemporal dementia (FTD). Based on their findings in human patients and mice, the research team is proposing LSD1 as a central player in these neurodegenerative diseases and a drug target.

David Katz, PhD

The results were published Oct. 9 in Nature Communications.

In the brain, LSD1 (lysine specific histone demethylase 1) maintains silence among genes that are supposed to be turned off. When the researchers engineered mice that have the LSD1 gene snipped out in adulthood, the mice became cognitively impaired and paralyzed. Plenty of neurons were dying in the brains of LSD1-deleted mice, although other organs seemed fine. However, they lacked aggregated proteins in their brains, like those thought to drive Alzheimer’s disease and FTD.

“In these mice, we are skipping the aggregated proteins, which are usually thought of as the triggers of dementia, and going straight to the downstream effects,” says David Katz, PhD, assistant professor of cell biology at Emory University School of Medicine. Read more

Posted on by Quinn Eastman in Neuro Leave a comment

Tug of war between Parkinson’s protein and growth factors

Alpha-synuclein, a sticky and sometimes toxic protein involved in Parkinson’s disease (PD), blocks signals from an important brain growth factor, researchers have discovered.

The results were published this week in PNAS.

The finding adds to evidence that alpha-synuclein is a pivot for damage to brain cells in PD, and helps to explain why brain cells that produce the neurotransmitter dopamine are more vulnerable to degeneration.

Alpha-synuclein is a major component of Lewy bodies, the protein clumps that are a pathological sign of PD. Also, duplications of or mutations in the gene encoding alpha-synuclein drive some rare familial cases.

In the current paper, researchers led by Keqiang Ye, PhD demonstrated that alpha-synuclein binds and interferes with TrkB, the receptor for BDNF (brain derived neurotrophic factor). BDNF promotes brain cells’ survival and was known to be deficient in Parkinson’s patients. When applied to neurons, BDNF in turn sends alpha-synuclein away from TrkB.  [Ye’s team has extensively studied the pharmacology of 7,8-dihydroxyflavone, a TrkB agonist.]

A “tug of war” situation thus exists between alpha-synuclein and BDNF, struggling for dominance over TrkB. In cultured neurons and in mice, alpha-synuclein inhibits BDNF’s ability to protect brain cells from neurotoxins that mimic PD-related damage, Ye’s team found. Read more

Posted on by Quinn Eastman in Neuro Leave a comment

Imaging sleep drunkenness: #IHAW2017

At some point, everyone has experienced a temporary groggy feeling after waking up called sleep inertia. Scientists know a lot about sleep inertia already, including how it impairs cognitive and motor abilities, and how it varies with the time of day and type of sleep that precedes it. They even have pictures of how the brain wakes up piece by piece.

People with idiopathic hypersomnia or IH display something that seems stronger, termed “sleep drunkenness,” which can last for hours. Czech neurologist Bedrich Roth, the first to identify IH as something separate from other sleep disorders, proposed sleep drunkenness as IH’s defining characteristic.

Note: Emory readers may recall the young Atlanta lawyer treated for IH by David Rye, Kathy Parker and colleagues several years ago. Our post today is part of IH Awareness Week® 2017.

Sleep drunkenness is what makes IH distinctive in comparison to narcolepsy, especially narcolepsy with cataplexy, whose sufferers tend to fall asleep quickly. Those with full body cataplexy can collapse on the floor in response to emotions such as surprise or amusement. In contrast, people with IH tend not to doze off so suddenly, but they do identify with the statement “Waking up is the hardest thing I do all day.”

At Emory, neurologist Lynn Marie Trotti and colleagues are in the middle of a brain imaging study looking at sleep drunkenness.

“We want to find out if sleep drunkenness in IH is the same as what happens to healthy people with sleep inertia and is more pronounced, or whether it’s something different,” Trotti says. Read more

Posted on by Quinn Eastman in Neuro Leave a comment

Enhancing the brain’s clean up crews

Enhancing the brain’s own clean-up crews could be a strategy for handling the toxic proteins driving several neurodegenerative diseases, new research suggests.

Astrocytes, an abundant supportive cell type in the brain, are better than neurons at disposing of mutant huntingtin, the toxic protein that drives Huntington’s disease pathology, Xiao-Jiang Li and colleagues report in this week’s PNAS.

One reason why astrocytes are better at toxic protein defense than neurons is: they have less of an inhibitory protein called HspBP1. The scientists show that using CRISPR/Cas9 to “knock down” HspBP1 can help neurons get rid of mutant huntingtin and reduce early pathological signs.

Read more

Posted on by Quinn Eastman in Neuro Leave a comment

Granulins treasure not trash – potential FTD treatment strategy

Emory University School of Medicine researchers have developed tools that enable them to detect small proteins called granulins for the first time inside cells. Granulins are of interest to neuroscientists because mutations in the granulin gene cause frontotemporal dementia (FTD). However, the functions of granulins were previously unclear.

FTD is an incurable neurodegenerative disease and the most common type of dementia in people younger than 60. Genetic variants in the granulin gene are also a risk factor for Alzheimer’s disease and Parkinson’s disease, suggesting this discovery may have therapeutic potential for a broad spectrum of age-related neurodegenerative diseases.

The results were published August 9 by the journal eNeuro (open access).

Thomas Kukar, PhD

Some neuroscientists believed that granulins were made outside cells, and even could be toxic under certain conditions. But with the newly identified tools, the Emory researchers can now see granulins inside cells within lysosomes, which are critical garbage disposal and recycling centers. The researchers now propose that granulins have important jobs in the lysosome that are necessary to maintain brain health, suppress neuroinflammation, and prevent neurodegeneration.

Problems with lysosomes appear in several neurodegenerative diseases such as Alzheimer’s and Parkinson’s.

“A lysosomal function for granulins is exciting and novel.  We believe it may provide an explanation why decreased levels of granulins are linked to multiple neurodegenerative diseases, ranging from frontotemporal dementia to Alzheimer’s,” says senior author Thomas Kukar, PhD, assistant professor of pharmacology and neurology and the Emory University Center for Neurodegenerative Disease. Read more

Posted on by Quinn Eastman in Neuro Leave a comment

Insight into brain + learning via ‘friend of fragile X’ gene

We can learn a lot about somebody from the friends they hang out with. This applies to people and also to genes and proteins. Emory scientists have been investigating a gene that we will call — spoiler alert — “Friend of fragile X.”

Fragile X syndrome is the most common inherited form of intellectual disability, studied by research teams around the world with drug discovery and clinical trials in mind. It is caused by a disruption of the gene FMR1.

In an independent form of inherited intellectual disability found in a small number of Iranian families, a gene called ZC3H14 is mutated. Two papers from Ken Moberg, PhD, associate professor of cell biology, Anita Corbett, PhD, professor of biology and colleagues show that FMR1 and ZC3H14 are, in effect, friends.

The findings provide new insight into the function of FMR1 as well as ZC3H14; the evidence comes from experiments performed in fruit flies and mice. The most recent paper is in the journal Cell Reports (open access), published this week.

The scientists found that the proteins encoded by FMR1 and ZC3H14 stick together in cells and they hang out in the same places. The two proteins have related functions: they both regulate messenger RNA in neurons, which explains their importance for learning and memory.

The fragile X protein (FMRP) was known to control protein production in response to signals arriving in neurons, but the Cell Reports paper shows that FMRP is also regulating the length of  “tails” attached to messenger RNAs – something scientists did not realize, even after years of studying FMRP and fragile X, Moberg says.

To be sure, FMRP interacts with many proteins and appears to be a critical gatekeeper. Emory geneticist Peng Jin, who has conducted his share of research on this topic, says that “FMRP must be very social and has a lot of friends.” More here.

Posted on by Quinn Eastman in Neuro Leave a comment

Drug discovery: selective anti-inflammatory approach to AD

Anyone familiar with Alzheimer’s disease research can say what a challenge drug development has been. In Emory’s Department of Pharmacology, Thota Ganesh is focusing on an anti-inflammatory approach. Ganesh’s work has been supported by the Alzheimer’s Drug Discovery Foundation and more recently by a five-year, $3.6 million grant from the National Institute on Aging.

Medicinal chemist Thota Ganesh, PhD, is focusing on an anti-inflammatory approach to Alzheimer’s disease, targeting the prostaglandin receptor EP2.

An assistant professor at Emory since 2011, he is continuing research he undertook with Ray Dingledine on EP2 antagonists. In animals, they showed that this class of compounds could reduce injury to the brain after a prolonged seizure. Since then, they have shown that EP2 antagonists have similar effects in protecting against organophosphate pesticides/nerve agents.

EP2 is one of the four receptors for prostaglandin E2, a hormone involved in processes such as fever, childbirth, digestion and blood pressure regulation. Before Ganesh and colleagues from the Emory Chemical Biology Discovery Center started looking for them, chemicals that could block EP2 selectively were not available.

Their idea is: blocking EP2 is a better strategy than the more general approach of going after prostaglandins, the targets for non-steroid anti-inflammatory drugs (NSAIDs) such as aspirin, ibuprofen and celecoxib (Celebrex). Read more

Posted on by Quinn Eastman in Neuro Leave a comment

Emory neuro-researchers in Alzforum

Just a shoutout regarding Emory folks in Alzforum, the research news site focusing on Alzheimer’s and other neurodegenerative disorders.

Alzforum recently highlighted proteomics wizard Nick Seyfried’s presentation at a June meeting in Germany (Alzheimer’s Proteomics Treasure Trove). This includes work from the Emory ADRC and Baltimore Longitudinal Study of Aging that was published in Cell Systems in December: the first large-scale systems biology analysis of post-mortem brain proteins in Alzheimer’s. The idea is to have a fresh “unbiased” look at proteins involved in Alzheimer’s.

Also, neuroscientists Malu Tansey and Tom Kukar have been teaming up to provide detailed comments on papers being reported in Alzforum. Here’s one on inflammation related to gene alterations in frontotemporal dementia, and another on auto-immune responses in Parkinson’s.

Posted on by Quinn Eastman in Neuro Leave a comment

Big data with heart, for psychiatric disorders

Imagine someone undergoing treatment by a psychiatrist. How do we know the treatment is really working or should be modified?

To assess whether the patient’s condition is objectively improving, the doctor could ask him or her to take home a heart rate monitor and wear it continuously for 24 hours. An app connected to the monitor could then track how much the patient’s heart rate varies over time and how much the patient moves.

Heart rate variability can be used to monitor psychiatric disorders

MD/PhD student Erik Reinertsen is the first author on two papers in Physiological Measurement advancing this approach, working under the supervision of Gari Clifford, interim chair of Emory’s Department of Biomedical Informatics.

Clifford’s team has been evaluating heart rate variability and activity as a tool for monitoring both PTSD (post-traumatic stress disorder) and schizophrenia. Clifford says his team’s research is expanding to look at treatment-resistant depression and other mental health issues.

For clinical applications, Clifford emphasizes that his plans focus on tracking disease severity for patients who are already diagnosed, rather than screening for new diagnoses. His team is involved in much larger studies in which heart rate data is being combined with physical activity data from smart watches, body patches, and clinical questionnaires, as well as other behavioral and exposure data collected through smartphone usage patterns.

Intuitively, heart rate variability makes sense for monitoring PTSD, because one of the core symptoms is hyperarousal, along with flashbacks and avoidance or numbness. However, it turns out that the time that provides the most information is when heart rate is lowest and study participants are most likely asleep, or at their lowest ebb during the night.

Home sleep tests generate a ton of information, which can be mined. This approach also fits into a trend for wearable medical technology, recently highlighted in STAT by Max Blau (subscription needed).

The research on PTSD monitoring grows out of work by cardiologists Amit Shah and Viola Vaccarino on heart rate variability in PTSD-discordant twin veterans (2013 Biological Psychiatry paper). Shah and Vaccarino had found that low frequency heart rate variability is much less (49 percent less) in the twin with PTSD. Genetics influences heart rate variability quite a bit, so studying twins allows those factors to be accounted for. Read more

Posted on by Quinn Eastman in Heart, Neuro Leave a comment
1 2 3 4 5 6 7 8 9 10 ... 17 18   Next »