Antibody production: an endurance sport

To understand recent research from immunologist Jerry Boss’s lab on antibody production, think about the distinction between sprinting and long-distance Read more

Less mucus, more neutrophils: alternative view of CF

A conventional view of cystic fibrosis (CF) and its effects on the lungs is that it’s all about mucus. Rabin Tirouvanziam has an alternative view, centered on Read more

cryo-electron microscopy

Toe in the water for Emory cryo-EM structures

Congratulations to Christine Dunham and colleagues in the Department of Biochemistry for their first cryo-electron microscopy paper, recently published in the journal Structure.

The paper solves the structure of a bacterial ribosome bound to a messenger RNA containing a loop that regulates translation. This process is important for the study of several neurological diseases such as fragile X syndrome, for example.

Christine Dunham, PhD

Dunham writes: “We are focusing on establishing this in bacteria to understand frameshifting and protein folding as a consequence of codon preference. We will then build up our knowledge to potentially study eukaryotic translational control.”

The paper neatly links up with two Nobel Prizes: the 2017 Chemistry prize for cryo-electron microscopy and the 2009 Chemistry prize for ribosome structure, awarded in part to Dunham’s mentor Venki Ramakrishnan. Also, see this 2015 feature from Nature’s Ewen Callaway outlining how cryo-EM is a must have for structural biologists wanting to probe large molecules that are difficult to crystallize.

Construction now underway in the Biochemistry Connector will allow installation of microscopes (worth $6 million) necessary for Dunham and others to do cryo-EM here at Emory, although she advises that it will be several months until they are photo-op ready. For the Structure paper, Dunham collaborated with George Skiniotis at University of Michigan; he recently moved to Stanford. Read more

Posted on by Quinn Eastman in Neuro, Uncategorized Leave a comment