A new term in biophysics: force/time = "yank"

A group of scientists have proposed to define change in force over time as Read more

Are immune-experienced mice better for sepsis research?

The goal is to make mouse immune systems and microbiomes more complex and more like those in humans, so the mice they can better model the deadly derangement of Read more

One more gene between us and bird flu

We’re always in favor of stopping a massive viral pandemic, or at least knowing more about what might make one Read more

Department of Medicine

B cells off the rails early in lupus

New research on the autoimmune disease systemic lupus erythematosus (SLE) provides hints to the origins of the puzzling disorder. The results are published in Nature Immunology.

In people with SLE, their B cells – part of the immune system – are abnormally activated. That makes them produce antibodies that react against their own tissues, causing a variety of symptoms, such as fatigue, joint pain, skin rashes and kidney problems.

Scientists at Emory University School of Medicine could discern that in people with SLE, signals driving expansion and activation are present at an earlier stage of B cell differentiation than previously appreciated. They identified patterns of gene activity that could be used as biomarkers for disease development.

Activation can be observed at an early stage of B cell differentiation: resting naive cells (pink ellipse). Adapted from Jenks et al Immunity (2018).

“Our data indicate a disease signature across all cell subsets, and importantly on mature resting B cells, suggesting that such cells may have been exposed to disease-inducing signals,” the authors write.

The paper reflects a collaboration between the laboratories of Jeremy Boss, PhD, chairman of microbiology and immunology, and Ignacio (Iñaki) Sanz, MD, head of the division of rheumatology in the Department of Medicine. Sanz, recipient of the 2019 Lupus Insight Prize from the Lupus Research Alliance, is director of the Lowance Center for Human Immunology and a Georgia Research Alliance Eminent Scholar. The first author is Christopher Scharer, PhD, assistant professor of microbiology and immunology.

The researchers studied blood samples from 9 African American women with SLE and 12 healthy controls. They first sorted the B cells into subsets, and then looked at the DNA in the women’s B cells, analyzing the patterns of gene activity. Sanz’s team had previously observed that people with SLE have an expansion of “activated naïve” and DN2 B cells, especially during flares, periods when their symptoms are worse. Read more

Posted on by Quinn Eastman in Immunology Leave a comment

Take heart, Goldilocks — and get more sleep

Sleeping too little or too much increases the risk of cardiovascular events and death in those with coronary artery disease, according to a new paper from Emory Clinical Cardiovascular Research Institute.

Others have observed a similar U-shaped risk curve in the general population, with respect to sleep duration. The new study, published in American Journal of Cardiology, extends the finding to people who were being evaluated for coronary artery disease.

Arshed Quyyumi, MD and colleagues analyzed data from a registry of 2846 patients undergoing cardiac catheterization at Emory. The “sweet spot” appeared to be those who report sleeping between 6.5 and 7.5 hours per night.

39 percent of patients with coronary artery disease reported that they slept fewer than 6.5 hours per night, and 35 percent slept longer than 7.5 hours. For the next few years, both groups had higher risks of all-cause mortality: elevated risk of 45 percent and 41 percent, respectively. Patients were followed for an average of 2.8 years.

The extreme ends of sleep duration both had even higher risk: people who reported less than 4.5 hours per day had almost double mortality risk (96 percent), and those more than 8.5 hours had 84 percent higher mortality risk.

Patients with short sleep durations also had higher cardiovascular mortality (48 percent), but adjusting for cardiovascular risk factors attenuated the association between long sleep duration and CV risk.

A detailed assessment of someone’s sleep can require PSG (polysomnography). In this study,  researchers were able to get information by simply asking about sleep duration.

The participants in the Emory study were simply asked: “How many hours of sleep do you usually get each night (or when you usually sleep)?” This question may not always be answered accurately, since time in bed isn’t necessarily time asleep. Still, the broad strokes show that the sleep-CV health relationship is robust.

“What is most stunning to me are that these data were collected from cardiac patients about to undergo an invasive procedure, who still reported an aspect of their sleep that was meaningful and predictive of future survival,” says Donald Bliwise, PhD, a specialist in sleep and aging research who is a co-author on the Emory study. “Often, epidemiologic studies collect data far away from a clinic setting, where anxiety is less and estimations may be sharper. We have here in this clinical study beautiful evidence that estimates made ‘from the gurney’ may be just as meaningful as those collected in the field.”

Quyyumi says if patients with heart disease are sleeping poorly, it’s important to recognize that they are at higher risk and counsel them regarding getting more sleep, as well as factors that can disrupt sleep, such as caffeine, alcohol and looking at screens late in the day.

More specific treatments may depend what is interfering with high-quality sleep in a given patient. Several conditions can lead to difficulty sleeping, such as sleep apnea, restless leg syndrome, as well as depression, all of which have been linked with heart disease. Physiologically, several mechanisms are probably exerting their effects, such as weakening circadian rhythms and sleep fragmentation with aging, and obesity/metabolic syndrome driving inflammation. Read more

Posted on by Quinn Eastman in Heart Leave a comment

Predict the future of critical care in #STATMadness

Emory is participating in STAT Madness, a “March Madness” style bracket competition featuring biomedical research advances instead of basketball teams. Universities or research institutes nominate their champions, research papers that were published the previous year. It’s like “Battle of the Bands.” Whoever gets the loudest — or most numerous — cheers wins.

Please check out all 64 entries, follow the 2019 STAT Madness bracket and vote here:
https://www.statnews.com/feature/stat-madness/bracket/

Emory’s entry for 2019:
It’s like the “precogs” who predict crime in the movie Minority Report, but for sepsis, the deadly response to infection. Shamim Nemati and colleagues have been exploring ways to analyze vital signs in ICU patients and predict sepsis, hours before clinical staff might otherwise notice.

As landmark clinical studies have documented, every hour of delay in giving someone with sepsis antibiotics increases their risk of mortality. So detecting sepsis as early as possible could save thousands of lives. Many hospitals have developed “sniffer” systems that monitor patients for sepsis, but this algorithm tries to spot problems way before they become apparent.

As published in 2018 in Critical Care Medicine, the algorithm can predict sepsis onset—with some false alarms—four, eight, even 12 hours ahead of time. No algorithm is going to be perfect, but it was better than any other previous sepsis predictor. The technology is headed for additional testing and evaluation at several medical centers, as part of a project supported by the federal Biomedical Advanced Research and Development Authority (BARDA).

You can fill out a whole bracket or you can just vote for Emory. The contest will last several rounds. The first round began on Monday, March 4, and lasts until the end of the week. Before 10 am Eastern time Monday morning, there were already more than 5,000 brackets entered!

If Emory advances, then people will be able to continue voting for us starting on Friday. Emory’s first opponent is a regional rival, Vanderbilt University School of Medicine. We are on the upper left side of the bracket.

STAT News is a Boston-based news organization covering biomedical research, pharma and biotech. If you feel like it, please share on social media using the hashtag #statmadness.

Posted on by Quinn Eastman in Uncategorized Leave a comment

How intestinal bacteria affect bone formation

Helpful intestinal bacteria may stimulate bone formation via butyrate, according to a recent paper in Immunity. Butyrate increases bone formation through its regulation of T cells, Emory researchers report.

The finding adds to evidence for beneficial effects of butyrate and other SCFA (short chain fatty acid) metabolites, which are produced by bacterial fermentation of fiber in the intestines.

Roberto Pacifici and colleagues had observed that probiotic supplements protected female mice from the loss of bone density occurring after ovary removal, a simulation of the hormonal changes of menopause. Probiotic bacteria could also stimulate bone formation in mice with intact ovaries, the researchers found.

The new Immunity paper shows how this effect is produced. The probiotic bacteria do not make butyrate themselves, but they encourage the growth of other Clostridum bacteria that do produce butyrate. Read more

Posted on by Quinn Eastman in Immunology Leave a comment

Mapping shear stress in coronary arteries can help predict heart attacks

A heart attack is like an earthquake. When a patient is having a heart attack, it’s easy for cardiologists to look at a coronary artery and identify the blockages that are causing trouble. However, predicting exactly where and when a seismic fault will rupture in the future is a scientific challenge – in both geology and cardiology.

In a recent paper in Journal of the American College of Cardiology, Habib Samady, MD, and colleagues at Emory and Georgia Tech show that the goal is achievable, in principle. Calculating and mapping how hard the blood’s flow is tugging on the coronary artery wall – known as “wall shear stress” – could allow cardiologists to predict heart attacks, the results show.

Map of wall shear stress (WSS) in a coronary artery from someone who had a heart attack

“We’ve made a lot of progress on defining and identifying ‘vulnerable plaque’,” says Samady, director of interventional cardiology/cardiac catheterization at Emory University Hospital. “The techniques we’re using are now fast enough that they could help guide clinical decision-making.”

Here’s where the analogy to geography comes in. By vulnerable plaque, Samady means a spot in a coronary artery that is likely to burst and cause a clot nearby, obstructing blood flow. The researchers’ approach, based on fluid dynamics, involves seeing a coronary artery like a meandering river, in which sediment (atherosclerotic plaque) builds up in some places and erodes in others. Samady says it has become possible to condense complicated fluid dynamics calculations, so that what once took months now might take a half hour.

Previous research from Emory showed that high levels of wall shear stress correlate with changes in the physical/imaging characteristics of the plaque over time. It gave hints where bad things might happen, in patients with relatively mild heart disease. In contrast, the current results show that where bad things actually did happen, the shear stress was significantly higher.

“This is the most clinically relevant work we have done,” says Parham Eshtehardi, MD, a cardiovascular research fellow, looking back on the team’s previous research, published in Circulation in 2011.  Read more

Posted on by Quinn Eastman in Heart Leave a comment

Clues to lupus’s autoimmune origins in precursor cells

In the autoimmune disease systemic lupus erythematosus or SLE, the immune system produces antibodies against parts of the body itself. How cells that produce those antibodies escape the normal “checks and balances” has been unclear, but recent research from Emory University School of Medicine provides information about a missing link.

Investigators led by Ignacio (Iñaki) Sanz, MD, studied blood samples from 90 people living with SLE, focusing on a particular type of B cells. These “DN2” B cells are relatively scarce in healthy people but substantially increased in people with SLE.

The results were published in the journal Immunity.

People with lupus can experience a variety of symptoms, such as fatigue, joint pain, skin rashes and kidney problems. Levels of the DN2 cells were higher in people with more severe disease or kidney problems. DN2 B cells are thought to be “extra-follicular,” which means they are outside the B cell follicles, regions of the lymph nodes where B cells are activated in an immune response.

“Overall, our model is that a lot of lupus auto-antibodies come from a continuous churning out of new responses,” says postdoctoral fellow Scott Jenks, PhD, co-first author of the paper. “There is good evidence that DN2 cells are part of the early B cell activation pathway happening outside B cells’ normal homes in lymph nodes.”

Previous research at Emory has shown that African American women have significantly higher rates of lupus than white women. In the current study, the researchers observed that the frequency of DN2 cells was greater in African American patients. Participants in the study were recruited by Emory, University of Rochester and Johns Hopkins. Read more

Posted on by Quinn Eastman in Immunology Leave a comment

Mini-monsters of cardiac regeneration

After a heart attack, cardiac muscle cells die because they are deprived of blood and oxygen. In an adult human, those cells represent a dead end. They can’t change their minds about what kind of cell they’ve become.

In newborn babies, as well as in adult fish, the heart can regenerate after injury. Why can’t the human heart be more fishy? At Emory, researcher Jinhu Wang is seeking answers, which could guide the development of regenerative therapies.

“If we want to understand cardiac regeneration in mammals, we can look at it from the viewpoint of the fish,” he says.

A lot of research in regenerative medicine focuses on the potential of stem cells, which have not committed to become one type of tissue, such as brain, skin or muscle. Wang stresses that the ability of zebrafish hearts to regenerate does not originate from stem cells. It comes from the regular tissues. The cells are induced to go back in time and multiply, although their capacity to regenerate may vary with the age of the animal, he says.

Jinhu Wang, PhD manages an impressive set of fish tanks

Zebrafish hearts are simpler than mammals’: theirs have just two chambers, while ours have four. Nobel Prize winner Christiane Nusslein-Vollhard has promoted the use of zebrafish as a genetic model in developmental biology. Its embryos are transparent, making it easy to spot abnormalities.

Wang’s fish room in the basement of Emory’s Rollins Research Center contains more than 1000 fish tanks, with different sizes of cage for various ages and an elaborate water recycling system. The adult fish eat brine shrimp that are stored in vats in one corner of the lab. Read more

Posted on by Quinn Eastman in Heart Leave a comment

Probiotics for bone health study heads into clinic

Probiotic supplements can protect female mice from the loss of bone density that occurs after having their ovaries removed, researchers at Emory and Georgia State reported a couple years ago.

Roberto Pacifici, MD

This finding, published in Journal of Clinical Investigation, had clear implications for the treatment of osteoporosis in post-menopausal women. Prompted by external emails, Lab Land learned that the Emory investigators are now continuing their research in the clinic.

Endocrinologist/osteoimmunologist Roberto Pacifici and colleague Jessica Alvarez are conducting a double-blind study for women aged 50-65, using VSL3, a widely available and inexpensive dietary supplement. Participants would take the supplement or placebo for a year. More information is available here.

In mice, the loss of estrogen increases gut permeability, which allows bacterial products to activate immune cells in the intestine. In turn, immune cells release signals that break down bone. It appears that probiotics both tighten up the permeability of the gut and dampen inflammatory signals that drive the immune cells. Read more

Posted on by Quinn Eastman in Immunology Leave a comment

Racial disparities in a CV biomarker

Because circulating progenitor cells repair blood vessels, they are a measure of regenerative capacity in the cardiovascular system. Cardiologist Arshed Quyyumi, MD and his colleagues at Emory Clinical Cardiovascular Research Institute have intensively studied this cell type as a marker of vulnerability or resilience.

A recent paper from Quyyumi’s team in Circulation Research examines circulating progenitor cells (CPCs) through the lens of racial disparity. The authors find that African-Americans tend to have lower levels of this regenerative biomarker:

In a large well-characterized biracial cohort, we demonstrate that black participants had significantly lower CPC counts compared with whites, even after adjustment for differences in demographic factors and CVD risk factors. These results were validated in an independent cohort. Thus, on average, after adjustment for sex and other CVD risk factors, blacks have CPC levels that are ≈15% to 30% lower compared with whites, even in subjects free of risk factors. CPC levels decline with age, reaching on average half the levels at age 80 compared with age 20. We found that blacks have CPC counts equivalent to those in whites who are 14 years older. CPC levels are higher after AMI as a result of mobilization because of injury. We show for first time that blacks have 30% to 35% lower CPC mobilization in the setting of AMI.

This is a tricky area to study. How many socioeconomic and environmental factors go into the racial disparities of cardiovascular disease risk? Diet. Exercise. Geography, education, access to healthcare. Air pollution. Psychological stress and inflammation associated with discrimination. It is possible to view CPCs as summing up many of these influences, analogous to the way hemoglobin A1C measurements integrate someone’s blood sugar levels over time as a marker of diabetes. Read more

Posted on by Quinn Eastman in Heart Leave a comment

Blue plate special: express delivery to the heart

The anti-arrhythmia drug amiodarone is often prescribed for control of atrial fibrillation, but can have toxic effects upon the lungs, eyes, thyroid and liver. Emory and Georgia Tech scientists have developed a method for delivering amiodarone directly to the heart in an extended release gel to reduce off-target effects.

The results were published in Circulation: Arrhythmia and Electrophysiology.

The senior author is Rebecca Levit, MD, assistant professor of medicine (cardiology) at Emory University School of Medicine and adjunct in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory. Graduate student Jose Garcia – part of co-author Andres Garcia’s lab at Georgia Tech — and Peter Campbell, MD are the first authors.

An amiodarone-containing gel was applied to the outside of the heart by a minimally invasive procedure. After a one-time delivery, the gel could reduce the duration of atrial fibrillation and the likelihood of its development for a month in a pig model. The researchers were also able to show that amiodarone did not have toxic effects on the pigs’ lungs.

As noted in the book Off-label prescribing – Justifying unapproved medicine, amiodarone is “one of the very few drugs approved by the FDA in modern times without rigorous randomized clinical trials.” Read more

Posted on by Quinn Eastman in Heart Leave a comment