Molecular picture of how antiviral drug molnupiravir works

A cryo-EM structure showing how the antiviral drug molnupiravir drug Read more

Straight to the heart: direct reprogramming creates cardiac “tissue” in mice

New avenues for a quest many cardiologists have pursued: repairing the damaged heart like patching a Read more

The future of your face is plastic

An industrial plastic stabilizer becomes a skin Read more

Department of Medicine

Straight to the heart: direct reprogramming creates cardiac “tissue” in mice

Bypassing stem cells, Emory scientists can now create engineered heart tissue by directly reprogramming connective tissue cells in mice. The findings could provide new avenues for a quest many cardiologists have pursued: repairing the damaged heart like patching a roof. 

The results were published in Nature Biomedical Engineering

“This is the first study demonstrating direct tissue reprogramming from single adult cells from the body,” says senior author Young-sup Yoon, MD, PhD, professor of medicine at Emory University School of Medicine.

The research could potentially provide therapeutic options for millions of people with heart failure or other conditions. If heart muscle is damaged by a heart attack, the damaged or dead cells do not regenerate. Other scientists have shown they can create human heart tissue from induced pluripotent stem cells (example), but the Emory team showed that it is possible to avoid stem cells and the technologies required to create them, such as viruses. 

“Direct reprogramming into tissues that contain multiple cell types has not previously been reported, and it could open new pathways in the regenerative medicine field,” Yoon says. “It could serve as a platform for cell-based therapy by avoiding the problems of current stem cell-based approaches, and for disease modeling and drug development.”

First author Jaeyeaon Cho, PhD – currently at Yonsei University

Yoon is also part of the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory. First author Jaeyeaon Cho, PhD was a post-doctoral fellow at Emory and is currently a research assistant professor at Yonsei University College of Medicine in South Korea. Emory faculty members Rebecca Levit, MD and Hee Cheol Cho, PhD are co-authors on the paper.

Applying a combination of growth factors, regulatory microRNA and vitamins, the Emory researchers could create tissue that contains cardiac muscle, along with blood vessels containing endothelial cells and smooth muscle cells, and fibroblasts. In culture, the four cell types weave themselves together, bypassing any need to build heart tissue from separate components.

When transplanted onto the damaged heart of a mouse after a simulated heart attack, cells from the engineered tissue can migrate into the host heart, and improve its functioning. 

“In some previous studies, when a tissue patch composed of engineered cells and supportive biomaterials was transplanted to the damaged heart, there was little or no migration of cells from the patch to the host heart,” Yoon says.

From Cho et al. Nature Biomed Eng (2021). Migration of rCVT (reprogrammed cardiovascular tissue) into the host heart, 2 weeks after implantation. The white lines outline the heart muscle wall; only the implanted tissue fluoresces green, because of green fluorescent protein.

The critical elements of the direct reprogramming approach are microRNAs, which are “master keys” that control several genes at once. The researchers discovered the potential of one microRNA fortuitously; a pilot study examined the effect of applying several microRNAs active in the heart to fibroblasts. Unexpectedly, one of them generated endothelial cell and smooth muscle along with cardiac muscle cells.

The Emory researchers say that their engineered tissue does not exactly mimic natural heart tissue. The cardiac muscle cells do spontaneously contract, but they display immature characteristics. But after transplantation, the engrafted cells mature and integrate into the host heart. Over 16 weeks, the engrafted cells become indistinguishable from the host cardiac muscle cells. The researchers checked whether their transplanted tissue induced cardiac arrhythmias in the mice – a danger when introducing immature cells into the damaged heart — and they did not.

Yoon says it took almost 9 years to complete the project; an important next step is to test direct reprogramming with human cells.

This work was supported by grants from the National Heart Lung and Blood Institute (R01HL150877, R61HL 154116, R01HL125391) and a American Heart Association Transformative Project Award.

Posted on by Quinn Eastman in Heart Leave a comment

COVID-triggered autoimmunity may be mostly temporary

In people with severe COVID-19, the immune system goes temporarily berserk and generates a wide variety of autoantibodies: proteins that are tools for defense, but turned against the body’s own tissues.

During acute infection, COVID-19 patients’ immune systems resemble those of people with diseases such as lupus or rheumatoid arthritis. However, after the storm passes, the autoantibodies decay and are mostly removed from the body over time, according to a study of a small number of patients who were hospitalized and then recovered. 

In a preprint posted on medRxiv, Emory immunologists provide a view of the spectrum of what COVID-generated autoantibodies react against, both during acute infection and later. Note: the results have not yet been published in a peer-reviewed journal.

The findings on COVID-19-triggered autoimmunity may have implications for both the treatment of acute infection and for long-haulers, in whom autoantibodies are suspected of contributing to persistent symptoms such as fatigue, skin rashes and joint pain.

During acute infection, testing for autoantibodies may enable identification of some patients who need early intervention to head off problems later. In addition, attenuation of autoantibody activity by giving intravenous immunoglobulin (IVIG) – an approach that has been tested on a small scale — may help resolve persistent symptoms, the Emory investigators suggest.

Researchers led by Ignacio Sanz, MD and Frances Eun-Hyung Lee, MD, isolated thousands of antibody-secreting cells from 7 COVID-19 patients who were in ICUs at Emory hospitals. They also looked for markers of autoimmunity in a larger group of 52 COVID-19 ICU patients.

Read more

Posted on by Quinn Eastman in Uncategorized Leave a comment

Detecting vulnerable plaque with a laser-induced whisper

A relatively new imaging technique called photoacoustic imaging or PAI detects sounds produced when laser light interacts with human tissues. Working with colleagues at Michigan State, Emory immunologist Eliver Ghosn’s lab is taking the technique to the next step to visualize immune cells within atherosclerotic plaques.

The goal is to more accurately spot vulnerable plaque, or the problem areas lurking within arteries that lead to clots, and in turn heart attacks and strokes. A description of the technology was recently published in Advanced Functional Materials

“I believe we are now closer to developing a more precise method to diagnose and treat life-threatening atherosclerotic plaques,” Ghosn says. “Our method could be deployed in combination with IVUS to significantly improve its accuracy and sensitivity, or it could be used non-invasively.”

From science fiction movies, we might think lasers come with a “pow” sound. Photoacoustic imaging is more like listening for a whisper: sounds associated with heat generated by a laser pulse when it is absorbed by tissue.

Earlier this year, the FDA approved a photoacoustic imaging system for detection of breast cancer. Several companies are developing photoacoustic imaging systems, and what we might call “plain vanilla” PAI is currently being tested on carotid artery plaque in clinical studies in Europe.

Ghosn’s approach, developed with biomedical engineer Bryan Smith at Michigan State, adds specificity by adding nanoparticle probes taken up by macrophages, the immune cells that accumulate within atherosclerotic plaques. The nanoparticles, administered before imaging, act as contrast agents.

Read more

Posted on by Quinn Eastman in Uncategorized Leave a comment

Regrowing adult heart muscle

In adulthood, our hearts generally can’t grow again in response to injury. Emory cardiology researchers Ahsan Husain and Nawazish Naqvi and their colleagues have been chipping away at this biological edifice in animal models, demonstrating that it is possible to remove constraints that prevent the heart from growing new muscle cells.

Husain and Naqvi’s teams accomplished this by combining the thyroid hormone T3 — already FDA approved — with siRNA-based inhibition of an enzyme called DUSP5. Their latest paper, published in the journal Theranostics, applies the combination in an animal model of drug-induced heart failure.

The anticancer drug doxorubicin is sometimes known as the “red devil”

The anticancer drug doxorubicin is notorious for its cardiotoxicity, yet it is a mainstay of treatment for breast cancer in adults and several types of cancer in children. Cardiotoxicity affects a fraction of breast cancer patients treated with doxorubicin (20 percent in some studies) and severely impacts mortality and quality of life.

In the mouse model, doxorubicin generates severe heart failure, with a 40 percent drop in left ventricular ejection fraction (LVEF), a measure of the heart’s pumping capacity. In response to the combination of T3 and DUSP5 siRNA, a large increase in LVEF is seen. The researchers also report that the treatment has a marked effect on the health of the animals, restoring their activity levels, grooming and posture. See the video for an example of a mouse heart treated with the T3/DUSP5 siRNA combination.

The results are potentially applicable to other situations when doctors would want to regrow or repair cardiac muscle. Husain reports plans for a clinical study in patients with drug-induced or other forms of heart failure, supported by a generous gift from the Atlanta-based ten Broeke Family Foundation.

Read more

Posted on by Quinn Eastman in Cancer, Heart Leave a comment

Strengthening SARS-CoV-2 genomic surveillance: support from CDC, private foundations

As part of an effort to strengthen genomic surveillance for emerging strains of SARS-CoV-2, the Centers for Disease Control and Prevention (CDC) has awarded a contract to Emory University researchers to characterize viral variants circulating in Georgia.

The two-year contract is part of the SPHERES (SARS-CoV-2 Sequencing for Public Health Emergency Response, Epidemiology and Surveillance) initiative, with roughly $620,000 in total costs. The principal investigator is Anne Piantadosi, MD, PhD, assistant professor of pathology and laboratory medicine, with co-investigator Mehul Suthar, PhD, assistant professor of pediatrics (infectious diseases).

Both Piantadosi and Suthar are affiliated with Emory University School of Medicine and Emory Vaccine Center. Additional Emory partners include assistant professor of medicine Ahmed Babiker, MBBS, assistant professor of medicine Jesse Waggoner, MD and assistant professor of biology Katia Koelle, PhD.

“We are analyzing SARS-CoV-2 genomes from patients in Georgia to understand the timing and source of virus introduction into our community,” Piantadosi says. “We want to know whether there have been population-level changes in the rates of viral spread, and whether there are associations between viral genotype, viral phenotype in vitro, and clinical phenotype or clinical outcome.”

Read more

Posted on by Quinn Eastman in Immunology, Uncategorized 1 Comment

Repurposing a rheumatoid arthritis drug for COVID-19

For COVID-19, many researchers around the world have tried to repurpose drugs for other indications, often unsuccessfully. New clinical trial results show that baricitinib, developed by Eli Lilly and approved for rheumatoid arthritis, can speed recovery and may reduce mortality in some groups of hospitalized COVID-19 patients.

How did this study, sponsored by the National Institute of Allergy and Infectious Diseases, come together? In part, through decade-long groundwork laid by investigators at Emory, and their collaborations with others.

The ACTT-2 results were recently published in New England Journal of Medicine. (More formal NIAID and Emory press releases are here and here.)

For several years, drug hunter and virologist Raymond Schinazi and his team had been investigating a class of medications called JAK inhibitors, as an option for tamping down chronic inflammation in HIV infection. Schinazi was one of the first at Emory to investigate the use of anti-inflammatory agents for herpesviruses and HIV in combination with antiviral drugs. He believed that these viruses “hit and run,” leaving behind inflammation, even if they later go into hiding and seem to disappear.

In Schinazi’s lab, Christina Gavegnano had shown that JAK inhibitors had both anti-inflammatory and antiviral properties in the context of HIV — a project she started as a graduate student in 2010. JAK refers to Janus kinases, which regulate inflammatory signals in immune cells.

 “Our team was working on this for 10 years for HIV,” Gavegnano says. “There was a huge amount of data that we garnered, showing how this drug class works on chronic inflammation and why.” 

Read more

Posted on by Quinn Eastman in Immunology Leave a comment

Engineered “stealth bomber” virus could be new weapon against metastatic cancer

Many cancer researchers can claim to have devised “smart bombs.” What has been missing is the stealth bomber – a delivery system that can slip through the body’s radar defenses. 

Oncolytic viruses, or viruses that preferentially kill cancer cells, have been discussed and tested for decades. An oncolytic virus against melanoma was approved by the FDA in 2015. But against metastatic cancers, they’ve always faced an overwhelming barrier: the human immune system, which quickly captures viruses injected into the blood and sends them to the liver, the body’s garbage disposal.

Researchers at Emory and Case Western Reserve have now circumvented that barrier. They’ve re-engineered human adenovirus, so that the virus is not easily caught by parts of the innate immune system.

The re-engineering makes it possible to inject the virus into the blood, without arousing a massive inflammatory reaction.

A cryo-electron microscopy structure of the virus and its ability to eliminate disseminated tumors in mice were reported on November 25 in Science Translational Medicine.

“The innate immune system is quite efficient at sending viruses to the liver when they are delivered intravenously,” says lead author Dmitry Shayakhmetov, PhD. “For this reason, most oncolytic viruses are delivered directly into the tumor, without affecting metastases. In contrast, we think it will be possible to deliver our modified virus systemically at doses high enough to suppress tumor growth — without triggering life-threatening systemic toxicities.”

Read more

Posted on by Quinn Eastman in Uncategorized Leave a comment

Detecting heart failure via wearable devices

Cardiology researchers have been eagerly taking up consumer electronic devices that include pulse oximeters. Being able to conveniently measure the level of oxygen in someone’s blood is a useful tool, whether one is interested in sleep apnea or COVID-19.

The news that the new Apple Watch includes a pulse oximeter prompted Lab Land to check in with Amit Shah, an Emory cardiologist who has been experimenting with similar devices to discriminate patients with heart failure from those with other conditions.

Shah, together with Shamim Nemati, now at UCSD, and bioinformatics chair Gari Clifford recently published a pilot study on detecting heart failure using the Samsung Simband. The Simband was a prototype device that didn’t make it to the consumer market, but it carried sensors for optical detection of blood volume changes (photoplethysmography), like on the Apple Watch. 

Heart failure causes symptoms such as shortness of breath and leg swelling, but other conditions such as anemia or lung diseases can appear similarly. The idea was to help discriminate people who might need an examination by echocardiogram (cardiac ultrasound).

Read more

Posted on by Quinn Eastman in Uncategorized Leave a comment

Microbiome critical for bone hormone action

Intestinal microbes are necessary for the actions of an important hormone regulating bone density, according to two papers from the Emory Microbiome Research Center. The papers represent a collaboration between Roberto Pacifici, MD and colleagues in the Department of Medicine and laboratory of Rheinallt Jones, PhD in the Department of Pediatrics.

Together, the results show how probiotics or nutritional supplementation could be used to modulate immune cell activity related to bone health. The two papers, published in Nature Communications and Journal of Clinical Investigation, are the first reports of a role for intestinal microbes in the mechanism of action of PTH (parathyroid hormone), Pacifici says.

PTH increases calcium levels in the blood and can either drive bone loss or bone formation, depending on how it is produced or administered. Continuous excessive production of PTH, or primary hyperparathyroidism, is a common endocrine cause of osteoporosis. Yet in another context, intermittent external PTH stimulates bone formation, and is an FDA-approved treatment for osteoporosis – also used off-label for fracture repair in athletes. Read more

Posted on by Quinn Eastman in Immunology Leave a comment

Hope Clinic part of push to optimize HIV vaccine components

Ten years ago, the results of the RV144 trial– conducted in Thailand with the help of the US Army — re-energized the HIV vaccine field, which had been down in the dumps. It was the first vaccine clinical trial to ever demonstrate any efficacy in preventing HIV. The Hope Clinic of Emory Vaccine Center has been involved in efforts to build on the RV144 trial’s promising results. These early-stage studies have been optimizing the best vaccine components and techniques for larger vaccine efficacy trials, some of which are now underway.

Nadine Rouphael, interim director of the Hope Clinic, was first author on a recent paper in Journal of Clinical Investigation, reporting a multi-center study from the HIV Vaccine Trials Network. HVTN is headquartered at the Fred Hutchinson Cancer Research Center in Seattle and supported by the National Institute of Allergy and Infectious Diseases.

“Our study shows that there are tools available to us now to improve on the immunogenicity seen in RV144, which may lead to better efficacy in future field trials,” Rouphael says. (See statement on the HVTN 105 study here.) Read more

Posted on by Quinn Eastman in Immunology Leave a comment
1 2 3 4 5 6 7   Next »