For nanomedicine, cell sex matters

New Emory/Georgia Tech BME faculty member Vahid Serpooshan's paper on the influences of cell sex on nanoparticle Read more

Toe in the water for Emory cryo-EM structures

Congratulations to Christine Dunham and colleagues in the Department of Biochemistry for their first cryo-electron microscopy paper, recently published in the journal Read more

Biomedical career fair April 13

We will provide more information when it is available. Friday, April 13. Emory Conference Center + Hotel, 1615 Read more


Football metabolomics

Following on the recent announcement of the Atlanta Hawks training center, here’s a Nov. 2015 research paper from Emory’s sports cardiologist Jonathan Kim, published in Annals of Sports Medicine and Research.

Jonathan Kim, MD

Kim and colleagues from Emory Clinical Cardiovascular Research Institute studied blood samples from 15 freshman football players at Georgia Tech before and after their first competitive season. The researchers had the help of metabolomics expert Dean Jones. Kim has also previously studied blood pressure risk factors in college football players.

On average, football players’ resting heart rate went down significantly (72 to 61 beats per minute), but there were no significant changes in body mass index or blood pressure. The research team observed changes in players’ amino acid metabolism, which they attribute to muscle buildup.

This finding may seem obvious, but imagine what a larger, more detailed analysis could do: start to replace locker room myths and marketing aimed at bodybuilders with science. This was a small, preliminary study, and the authors note they were not able to assess diet or nutritional supplementation. Read more

Posted on by Quinn Eastman in Heart Leave a comment

The other “cho-” cardiovascular disease biomarker

Quick, what biomarker whose name starts with “cho-” is connected with cardiovascular disease? Very understandable if your first thought is “cholesterol.” Today I’d like to shift focus to a molecule with a similar name, but a very different structure: choline.

Choline, a common dietary lipid component and an essential nutrient, came to prominence in cardiology research in 2011 when researchers at the Cleveland Clinic found that choline and its relatives can contribute to cardiovascular disease in a way that depends upon intestinal bacteria. In the body, choline is part of two phospholipids that are abundant in cell membranes, and is also a precursor for the neurotransmitter acetylcholine. Some bacteria can turn choline (and also carnitine) into trimethylamine N-oxide (TMAO), high levels of which predict cardiovascular disease in humans. TMAO in turn seems to alter how inflammatory cells take up cholesterol and lipids.

Researchers at Emory arrived at choline metabolites and their connection to atherosclerosis by another route. Hanjoong Jo and his colleagues have been productively probing the mechanisms of atherosclerosis with an animal model. Very briefly: inducing disturbed blood flow in mice, in combination with a high fat diet, can result in atherosclerotic plaque formation within a few weeks. Jo’s team has used this model to examine changes in gene activation, microRNAs, DNA methylation, and now, metabolic markers.

Talking about this study at Emory’s Clinical Cardiovascular seminar on Friday, metabolomics specialist Dean Jones said he was surprised by the results, which were recently published by the American Journal of Physiology (to be precise, their ‘omics journal). The lead author is instructor Young-Mi Go. Read more

Posted on by Quinn Eastman in Heart Leave a comment

Reading the blood: metabolomics

In the Star Trek series, Dr. McCoy could often instantly diagnose someone’s condition with the aid of his tricorder. Medicine on 21st century Earth has not advanced quite this far, but scientists’ ideas of how to use “metabolomics” are heading in this direction.

What is metabolomics? Just as genomics means reading the DNA in a person or organism, and assessing it and comparing it to others, metabolomics takes the same approach to all the substances produced as part of the body’s metabolism: watching what happens to food, drugs and chemicals we are exposed to in the environment.

This means dealing with a huge amount of information. Human genomes may be billions of letters (base pairs) in length, but at least there are only four choices of letter!

A recent article in Chemical & Engineering News explores this concept of the “exposome” and quotes Dean Jones. He and his colleagues recently described how they can use sophisticated analytical techniques to resolve thousands of substances in human plasma. Jones is the director of the Clinical Biomarkers Laboratory at Emory University School of Medicine. The paper is in the journal Analyst, published by the Royal Society of Chemistry.

Analytical techniques can discern more than 2500 metabolites from human plasma within 10 minutes

Using a drop of blood, within ten minutes the researchers can discern more than 2,500 substances in a reproducible way. One fascinating tidbit: when they compared the metabolic profiles for four healthy individuals, most of the “peaks” were common between individuals but 10 percent were unique.

The potential uses for this type of technology are staggering.

Jones reports he has been working with researchers at Yerkes National Primate Research Center to discern early signs of neurodegeneration in transgenic monkeys with Huntington’s disease. He has been collaborating with clinical nutrition specialist Tom Ziegler to examine how diet interacts with oxidative stress, and with lung biology to identify markers for fetal alcohol exposure in animal models.

Posted on by Quinn Eastman in Uncategorized Leave a comment