Warren symposium follows legacy of geneticist giant

If we want to understand how the brain creates memories, and how genetic disorders distort the brain’s machinery, then the fragile X gene is an ideal place to start. That’s why the Stephen T. Warren Memorial Symposium, taking place November 28-29 at Emory, will be a significant event for those interested in neuroscience and genetics. Stephen T. Warren, 1953-2021 Warren, the founding chair of Emory’s Department of Human Genetics, led an international team that discovered Read more

Mutations in V-ATPase proton pump implicated in epilepsy syndrome

Why and how disrupting V-ATPase function leads to epilepsy, researchers are just starting to figure Read more

Tracing the start of COVID-19 in GA

At a time when COVID-19 appears to be receding in much of Georgia, it’s worth revisiting the start of the pandemic in early 2020. Emory virologist Anne Piantadosi and colleagues have a paper in Viral Evolution on the earliest SARS-CoV-2 genetic sequences detected in Georgia. Analyzing relationships between those virus sequences and samples from other states and countries can give us an idea about where the first COVID-19 infections in Georgia came from. We can draw Read more

SARS-CoV-2

Tracing the start of COVID-19 in GA

At a time when COVID-19 appears to be receding in much of Georgia, it’s worth revisiting the start of the pandemic in early 2020. Emory virologist Anne Piantadosi and colleagues have a paper in Viral Evolution on the earliest SARS-CoV-2 genetic sequences detected in Georgia.

Analyzing relationships between those virus sequences and samples from other states and countries can give us an idea about where the first COVID-19 infections in Georgia came from. We can draw a few conclusions, such as: there was no “Patient Zero”, at least here.

According to sequence analysis in the paper, multiple early introductions of SARS-CoV-2 into Georgia occurred, probably coming from Asia, weeks before the first officially reported case in March 2020. The authors suggest that the early focus on returning international travelers was misplaced, as opposed to broader testing of patients with COVID-19 symptoms.

“SARS-CoV-2 was likely spreading within the state for approximately three weeks prior to detection in either diagnostic or sequencing data,” the authors write.

Tree showing relationships between SARS-CoV-2 genetic sequences from Georgia and other states/countries

In Georgia, the subclade, or swarm of related viruses, that was dominant early on (called 19B) disappeared by the end of April, eclipsed by variants carrying the D614G mutation. This was an early hint – even before the emergence of B117/Alpha and other variants such as Delta and Omicron — that SARS-CoV-2 would evolve through competition. 

Similarly, sequence analysis from Washington state – the site of the first COVID-19 case identified in the United States — has shown that the first official case did not lead directly to the initial wave of infections there. The first wave actually fizzled out as a result of public health interventions, but other undetected infections in Washington in February 2020 led to sustained downstream transmission. 

The co-first authors of the Viral Evolution paper are Emory infectious disease specialist Ahmed Babiker and graduate student Michael Martin, with co-authors from the Centers of Disease Control and Prevention. The paper analyzes sequences from Emory Healthcare patients along with previously available sequences.

In a few cases, scientists attempted to trace relationships between infected patients who had recently travelled to other countries (Italy, Switzerland) or other states (Louisiana, Colorado), but the available data did not confirm all of those connections. 

Keep in mind that SARS-CoV-2 testing was very limited at the start of the pandemic, because of short supplies as well as FDA policy. More extensive virus sequencing efforts at Emory did not begin until mid-March 2020. With respect to viruses, we only see what we look for, and scientists can’t analyze samples they don’t have. If more samples were available from January or February, what would we find? Also, this paper’s analysis does not include any (known) samples from a February 2020 funeral in Albany, GA that was considered a “super-spreader event.” 

Two years later, has SARS-CoV-2 genomic surveillance improved? Piantadosi says that her team’s paper should be viewed in combination with their recent paperon the detection of the first Omicron case in Georgia, a woman who became sick in November 2021 while visiting Cape Town, South Africa.

 “That’s an example of where we did better,” Piantadosi says. “It does speak to how much surveillance has improved. We were conducting routine surveillance – not focusing on returning travelers.”

In the Omicron case, the woman in question first went to a community testing site, and those samples were not available for sequence analysis.

Piantadosi says that “we’ve achieved Phase I” – in that large hospitals or health systems such as Emory are collecting SARS-CoV-2 sequences, and the state Department of Public Health and large diagnostic services companies are also doing so. But as more SARS-CoV-2 testing is performed at home – generally a good thing for convenience and public health — surveillance for new variants needs to continue, she says.

Posted on by Quinn Eastman in Uncategorized Leave a comment

COVID-triggered autoimmunity may be mostly temporary

In people with severe COVID-19, the immune system goes temporarily berserk and generates a wide variety of autoantibodies: proteins that are tools for defense, but turned against the body’s own tissues.

During acute infection, COVID-19 patients’ immune systems resemble those of people with diseases such as lupus or rheumatoid arthritis. However, after the storm passes, the autoantibodies decay and are mostly removed from the body over time, according to a study of a small number of patients who were hospitalized and then recovered. 

In a preprint posted on medRxiv, Emory immunologists provide a view of the spectrum of what COVID-generated autoantibodies react against, both during acute infection and later. Note: the results have not yet been published in a peer-reviewed journal.

The findings on COVID-19-triggered autoimmunity may have implications for both the treatment of acute infection and for long-haulers, in whom autoantibodies are suspected of contributing to persistent symptoms such as fatigue, skin rashes and joint pain.

During acute infection, testing for autoantibodies may enable identification of some patients who need early intervention to head off problems later. In addition, attenuation of autoantibody activity by giving intravenous immunoglobulin (IVIG) – an approach that has been tested on a small scale — may help resolve persistent symptoms, the Emory investigators suggest.

Researchers led by Ignacio Sanz, MD and Frances Eun-Hyung Lee, MD, isolated thousands of antibody-secreting cells from 7 COVID-19 patients who were in ICUs at Emory hospitals. They also looked for markers of autoimmunity in a larger group of 52 COVID-19 ICU patients.

Read more

Posted on by Quinn Eastman in Uncategorized Leave a comment

Multiple myeloma patients display weakened antibody responses to mRNA COVID vaccines

A new study reports weakened antibody responses to COVID-19 mRNA vaccines among most patients with multiple myeloma, a form of bone-marrow cancer associated with an immunocompromised state.

The research, published in the journal Leukemia, was carried out at the Institute for Myeloma and Bone Cancer Research (IMBCR) in California, in collaboration with Emory infectious diseases fellow Samuel Stampfer, MD, PhD.

Patients with smoldering myeloma, not requiring treatment, all achieved a good response to COVID-19 vaccination, whereas less than half of patients with active myeloma requiring treatment did. Specifically, only 45 percent of active patients fully responded to the mRNA vaccines, whereas less than a quarter showed a partial response and one-third did not respond to the vaccines above background antibody levels.

Serum samples from 103 multiple myeloma patients were obtained prior to vaccination and 2-3 weeks after administration of the first and second vaccines, and compared to a group of age‑matched healthy controls. Predictors of reduced antibody responses to the vaccines included: older age, impaired renal function, low lymphocyte counts, reduced uninvolved antibody levels, past first line of treatment, and those not in complete remission. Nearly two-thirds of patients who received the Moderna vaccine responded to a level thought to be clinically significant, whereas only approximately a quarter who received the Pfizer vaccine did.

“Based on these data, myeloma patients may need to continue social distancing following COVID-19 vaccination, and postvaccine antibody tests may help guide decisions regarding supplementary vaccination or antibody prophylaxis for this vulnerable population,” says Stampfer, who co-designed the clinical study, under the guidance of senior author James Berenson, MD, the Scientific and Medical Director of IMBCR.

“This study highlights the importance of recognizing the limitations of current vaccination approaches to COVID-19 for immunocompromised patients, and that new approaches will have to be developed to improve their protection from this dangerous infection,” Berenson says. “It also suggests that there may be clinically significant differences in the effectiveness of different COVID-19 vaccines for immune compromised patients. Until these advances occur, it means that myeloma patients will need to remain very careful even if they have been vaccinated through wearing their masks and avoiding contact with unvaccinated individuals.”.

Read more

Posted on by Quinn Eastman in Cancer, Immunology Leave a comment

COVID-19 vaccine-generated antibodies last at least 6 months

How long does COVID-19 vaccine-generated immunity last? New laboratory results provide a partial answer to that question.

Antibodies generated by a currently available COVID-19 vaccine declined over time, but remained at high levels in 33 study participants 6 months after vaccination, according to data published Tuesday in the New England Journal of Medicine.

The results could begin to inform public health decisions about COVID-19 booster vaccinations and how frequently people should receive them. In older study participants, antiviral antibody activity tended to decay more rapidly than in those aged 18-55.

From Doria-Rose et al (2021). Note that neutralizing antibody activity was (on average) higher at day 209 than on day 29, when the second vaccine dose was administered. It takes two weeks for the immune system to kick into high gear after the second shot.

Emory Vaccine Center’s Mehul Suthar, co-lead author of the brief report, said that the “correlates of protection” are not yet known from COVID-19 vaccine studies – that is, what levels of antiviral antibodies are needed to fend off infection. Other forms of immunity, such as T cells, could be contributing to antiviral protection as well.

He cautioned that the decay in antibody activity over time – not surprising in itself – may combine with increased prevalence of emerging SARS-CoV-2 variants that may allow viruses to escape the immune system’s pressure.

“Still, these are encouraging results,” Suthar says. “We are seeing good antibody activity, measured three different ways, six months after vaccination. There are differences between age groups, which are consistent with what we know from other studies.”

The findings come from analysis of samples from the Moderna mRNA-1273 phase I clinical trial, which began last year. Reports of clinical outcomes from Pfizer/BioNTech also indicate that their vaccine remains effective after six months.

Read more

Posted on by Quinn Eastman in Immunology Leave a comment

Strengthening SARS-CoV-2 genomic surveillance: support from CDC, private foundations

As part of an effort to strengthen genomic surveillance for emerging strains of SARS-CoV-2, the Centers for Disease Control and Prevention (CDC) has awarded a contract to Emory University researchers to characterize viral variants circulating in Georgia.

The two-year contract is part of the SPHERES (SARS-CoV-2 Sequencing for Public Health Emergency Response, Epidemiology and Surveillance) initiative, with roughly $620,000 in total costs. The principal investigator is Anne Piantadosi, MD, PhD, assistant professor of pathology and laboratory medicine, with co-investigator Mehul Suthar, PhD, assistant professor of pediatrics (infectious diseases).

Both Piantadosi and Suthar are affiliated with Emory University School of Medicine and Emory Vaccine Center. Additional Emory partners include assistant professor of medicine Ahmed Babiker, MBBS, assistant professor of medicine Jesse Waggoner, MD and assistant professor of biology Katia Koelle, PhD.

“We are analyzing SARS-CoV-2 genomes from patients in Georgia to understand the timing and source of virus introduction into our community,” Piantadosi says. “We want to know whether there have been population-level changes in the rates of viral spread, and whether there are associations between viral genotype, viral phenotype in vitro, and clinical phenotype or clinical outcome.”

Read more

Posted on by Quinn Eastman in Immunology, Uncategorized 1 Comment

Emory MVA COVID-19 Vaccine Safe and Effective in Animal Models

Researchers at Yerkes National Primate Research Center, Emory University, have developed a COVID-19 vaccine that has proven safe and effective in mice and monkeys. Results from this National Institute of Allergy and Infectious Diseases (NIAID)-funded study were published online Thursday, Feb. 4 in Immunity.

The Emory MVA COVID-19 vaccine induces protective immunity with the platform of modified vaccinia Ankara (MVA), a harmless version of a poxvirus that is well-known for its use in HIV/AIDS vaccines. Like the Moderna and Pfizer COVID-19 vaccines, the Emory MVA COVID-19 vaccine induces strong neutralizing antibodies, which support the immune system’s ability to fight infections. The Emory MVA COVID-19 vaccine also induces killer CD8 T cells, providing a multi-pronged approach to halting SARS-CoV-2.

In addition, the Emory researchers say the vaccine is easily adaptable to address disease variants and can be used in combination with existing vaccines to improve their ability to combat variants and has the potential to be equally effective with a single dose.

Lead researcher Rama Amara, PhD, built the Emory MVA COVID-19 vaccine based on his more than 20 years of experience working with MVA and animal models to develop an HIV/AIDS vaccine. He and his Yerkes-based research team tested two MVA SARS-CoV-2 vaccines in mice. One of them, MVA/S, used the complete spike protein of coronavirus to induce strong neutralizing antibodies and a strong killer CD8 T cell response against SARS-CoV-2.

“Generating neutralizing antibodies is an important component of a successful COVID-19 vaccine because the antibodies can block the virus from entering the body’s cells,” says Amara, Charles Howard Candler professor of microbiology and immunology at Emory University School of Medicine and a researcher in Yerkes’ Division of Microbiology and Immunology and Emory Vaccine Center. “It’s as important to activate CD8 T cells that can clear infected cells, so this allows us to approach halting the virus two ways simultaneously. The CD8 T cells also provide ongoing value because they are key to working against other variants of the virus, especially if antibodies fail.”

Read more

Posted on by Quinn Eastman in Immunology Leave a comment

The blind is off: Moderna COVID-19 vaccine study update

Amidst the tumult in the nation’s capital, a quieter reckoning was taking place this week for the Moderna COVID-19 vaccine clinical trial. Lab Land has been hearing from Emory-affiliated study participants that they’re finding out whether they received active vaccine or placebo.

For example, Emory and Grady physician Kimberly Manning, who had written about her participation in the Moderna study in a Lancet essay, posted on Twitter Tuesday. She discovered she had received placebo, and then was offered active vaccine.

After Moderna reported strong efficacy and an Emergency Use Authorization came from the FDA, this was going to happen at some point – the question was when and how. At the advisory panel hearing in December, there was some tension over whether to remove the blind immediately, as this STAT article describes:

“Companies have said that they feel an ethical obligation to deliver vaccine to placebo recipients; the FDA and experts at its advisory panel have debated whether this obligation even exists. Instead, they argue, offering vaccine to volunteers receiving placebo limits the quality of the data about the vaccine’s long-term efficacy and side effects.”

A plan to keep participants in the study under a blinded crossover design was floated, but not implemented. Some participants have said they sensed from the start, based on temporary unpleasant side effects, whether they had received active vaccine or placebo.

Posted on by Quinn Eastman in Immunology Leave a comment

Baricitinib effectively reduces COVID-19 lung inflammation in NHP model

In the race to halt the COVID-19 pandemic, researchers at Yerkes National Primate Research Center of Emory University share two important findings from their latest peer-reviewed, published study in Cell.

Rhesus monkeys are a valid animal model for COVID-19 studies because the way they experience and respond to the virus has comparable similarities to the way the virus affects humans, the researchers say. And baricitinib, an anti-inflammatory medication that is FDA-approved for rheumatoid arthritis, is remarkably effective in reducing the lung inflammation COVID-19 causes when the medication is started early after infection.

The study results have immediate and important implications for treating patients with COVID-19. Baricitinib will be compared against the steroid dexamethasone in a NIAID-sponsored clinical trial called ACTT-4 (Adaptive COVID-19 Treatment Trial), which started in November.

Mirko Paiardini, PhD, a researcher in Yerkes’ Microbiology and Immunology division, and his team selected rhesus macaques as the animal model because they expected the monkeys would mimic the disease course in humans, including the virus traveling to the upper and lower airways, and causing high levels of inflammation in the lungs. The team randomized eight rhesus macaques into two groups – a control and a treatment group; the animals in the treatment group received baricitinib.

“Our results showed the medication reduced inflammation, decreased inflammatory cells in the lungs and, ultimately, limited the virus’ internal path of destruction,” Paiardini says. “Remarkably, the animals we treated with baricitinib rapidly suppressed the processes responsible for inducing lung inflammation, thus elevating baricitinib for consideration as a frontline treatment for COVID-19 and providing insights on the way the drug works and its effectiveness.”

The FDA recently granted baricitinib emergency use authorization in combination with remdesivir based on the results of the ACTT-2 findings. “Our study was under way concurrently and, now, solidifies the importance of baricitinib in treating COVID-19,” Paiardini adds.

Co-senior author Raymond Schinazi, PhD, DSc, inventor of the most commonly used HIV/AIDS drugs to prevent progression of the disease and death, says: “Our study shows the mechanisms of action are consistent across studies with monkeys and clinical trials with humans. This means the nonhuman primate model can provide enough therapeutic insights to properly test anti-inflammatory and other COVID-19 therapies for safety and effectiveness.”

Schinazi is the Frances Winship Walters Professor of Pediatrics at Emory University School of Medicine and is affiliated with Yerkes.

“Ray and his group have been investigating the potential of anti-inflammatory drugs, such as baricitinib, for years in the context of another infection, HIV, in which inflammation is a key cause of sickness and death,” Paiardini says. “Our laboratories have collaborated for years to test therapeutics in the nonhuman primate model of HIV infection, thus placing us in a unique position when COVID-19 hit the U.S. to focus our combined expertise and efforts to halt the virus. It took only a phone call between the two of us to switch gears, begin work to create a reliable and robust monkey model of COVID-19 at Yerkes and test the potential of drugs to block inflammation.”

Tim Hoang, first author and Emory doctoral student in the Immunology and Molecular Pathogenesis Program, says: “It was exciting to be at the forefront of the response to COVID-19 and to be part of this research team that involved collaboration from Yerkes and Emory infectious disease experts, geneticists, chemists, pathologists and veterinarians.”

Co-first author and Emory postdoctoral fellow Maria Pino, PhD, emphasizes: “We knew Yerkes was uniquely suited to conduct this study because of the research and veterinary expertise, specialized facilities and animal colony, and our team’s commitment to providing better treatment options for people who have COVID-19.”

The research team plans to conduct further studies to better understand the inflammation the virus causes and to develop more targeted approached to mitigate the damage COVID-19 leaves behind.

Steven Bosinger, PhD, co-senior author, and his research team conducted the genomic analyses that helped unravel the process by which baricitinib reduces inflammation. “One of the most exciting aspects of this project was the speed genomics brought to the collaborative research,” says Bosinger. “Eight months ago, we began using genomics to accelerate the drug screening process in order to identify treatable, molecular signatures of disease between humans and model organisms, such as the monkeys in this study, In addition to determining the effectiveness of baricitinib, this study highlights Emory researchers’ commitment to improving human health and, in this case, saving human lives.”

Bosinger is assistant professor, Department of Pathology & Laboratory Medicine, Emory School of Medicine (SOM) and Emory Vaccine Center (EVC); director, Yerkes Nonhuman Primate Genomics Core and a researcher in Yerkes’ Division of Microbiology and Immunology. 

Some of the others on the Emory research team include: Arun Boddapati (co-first author), Elise Viox, Thomas Vanderford, PhD, Rebecca Levit, MD, Rafick Sékaly, PhD, Susan Ribeiro, PhD, Guido Silvestri, MD, Anne Piantadosi, MD, PhD, Sanjeev Gumber, BVSc, MVSc, PhD, DACVP, Sherrie Jean, DVM, DACLAM, and Jenny Wood, DVM, DACLAM. Jacob Estes, PhD, at Oregon Health & Science University also collaborated.

Paiardini says, “So many colleagues had a key role in this study. First authors Tim and Maria as well as Yerkes veterinary and animal care personnel who worked non-stop for months on this project. This truly has been a collaborative effort at Emory University to help improve lives worldwide.”

This study was funded by the National Institutes of Health, Emory University’s COVID-19 Molecules and Pathogens to Populations and Pandemics Initiative Seed Grant, Yerkes’ base grant, which included support for the center’s Coronavirus Pilot Research Project grants, and Fast Grants.

Grant amounts (direct + indirect) are:

NIH R37AI141258, $836,452/yr (2018-23)

NIH R01AI116379, $783,714/yr (2015-20 + 2021 NCE)

NIH P51 OD011132, $10,540,602/yr (2016-20)

U24 AI120134 $681,214/yr (2020-2025)

S10OD026799 $985,030/yr (2019-2020)

Emory University COVID-19 Molecules and Pathogens to Populations and Pandemics Initiative Seed Grant, $150,000/1 yr

Fast Grants #2144, $100,000/1 yr

Note: Only a portion of the NIH grant funding was applied to the study reported in this news release. 

Posted on by Quinn Eastman in Immunology Leave a comment

NIAID long COVID workshop

On Thursday and Friday, Emory researchers participated in an online NIAID workshop about “post-acute sequelae” of COVID-19, which includes people with long COVID.

Long COVID has some similarities to post-viral ME/CFS (myalgic encephalomyelitis/ chronic fatigue syndrome), which has a history of being dismissed or minimized by mainstream medicine. In contrast, the workshop reflected how seriously NIAID and researchers around the world are taking long COVID.

Post-acute is a confusing term, because it includes both people who were hospitalized with COVID-19, sometimes spending weeks on a ventilator or in an intensive care unit, as well as members of the long COVID group, who often were not hospitalized and did not seem to have a severe infection to begin with.

COVID-19 infection can leave behind lung or cardiac damage that could explain why someone would have fatigue and shortness of breath. But there are also signs that viral infection can perturb other systems of the body, leading to symptoms such as “brain fog” (cognitive/memory problems), persistent pain and/or loss of smell and taste.

Highlights from Thursday were appearances from patient advocates Hannah Davis and Chimere Smith, along with virologist Peter Piot, who all described their experiences. Davis is part of a patient-led long COVID-19 support group, which has pushed research forward.

One goal for the workshop was to have experts discuss how to design future studies, or how to take advantage of existing studies to gain insights. A major clue on what to look for comes from Emory immunologist Ignacio Sanz, who spoke at the conference.

Sanz’s research has shown similarities between immune activation in people hospitalized at Emory with severe COVID-19 and in people with the autoimmune disease lupus. In lupus, the checks and balances constraining the immune system break down. A characteristic element of lupus are autoantibodies: antibodies that recognize parts of the body itself. Their presence in COVID-19 may be an explanation for the fatigue, joint pain and other persistent symptoms experienced by some people after their acute infections have passed.

Part of Ignacio Sanz’s talk at the NIAID conference on post-acute sequelae of COVID-19

For details on Sanz’s research, please see our write-up from October, their Nature Immunology paper, and first author Matthew Woodruff’s explainer. The Nature Immunology paper’s results didn’t include measurement of autoantibodies, but a more recent follow-up did (medRxiv preprint). More than half of the 52 COVID-19 patients tested positive for autoantibodies at levels comparable to those in lupus. In those with the highest amounts of the inflammatory marker CRP, the proportion was greater.

“It could be that severe viral illness routinely results in the production of autoantibodies with little consequence; this could just be the first time we’re seeing it,” Woodruff writes in a second explainer. “We also don’t know how long the autoantibodies last. Our data suggest that they are relatively stable over a few weeks. But, we need follow-up studies to understand if they are persisting routinely beyond infection recovery.”

Sanz’s group was looking at patients’ immune systems when both infection and inflammation were at their peaks. They don’t yet know whether autoantibodies persist for weeks or months after someone leaves the hospital. In addition, this result doesn’t say what is happening in the long COVID group, many of whom were not hospitalized.

Autoantibodies have also been detected in MIS-C (multisystem inflammatory syndrome in children), a rare complication that can come after an initial asymptomatic infection. In addition, some patients’ antiviral responses are impaired because of autoantibodies against interferons.

It makes sense that multiple mechanisms could explain post-COVID impairments, including persistent inflammation, damage to blood vessels or various organs, and blood clots/mini-strokes.

Anthony Komaroff from Harvard, who chaired a breakout group on neurology/psychiatry, said the consensus was that so far, direct evidence of viral infection in the brain is thin. Komaroff said that neuro/psych effects are more likely to come from the immune response to the virus.

There were breakout groups for different areas of investigation, such as cardiovascular, and gastrointestinal. Emory Vaccine Center director Rafi Ahmed co-chaired a session for immunologists and rheumatologists, together with Fred Hutch’s Julie McElrath.

Emory’s Carlos del Rio, who recently summarized long COVID for JAMA, spoke about racial and ethnic disparities in COVID-19’s impact and said he expected similar inequities to appear with long COVID.

Reports from the breakout groups Friday emphasized the need to design prospective studies, which would include people before they became sick and take baseline samples. Some suggestions came for taking advantage of samples from the placebo groups in recent COVID-19 vaccine studies.

La Jolla immunologist Shane Crotty said that researchers need to track the relationship between infection severity/duration and post-infection impairments. “There’s a big gap on the virological side,” Crotty said. He noted that one recent preprint shows that SARS-CoV-2 virus is detectable in the intestines in some study participants 3 months after onset.  

Posted on by Quinn Eastman in Immunology Leave a comment

Saliva-based SARS-CoV-2 antibody testing

As the Atlanta area recovers from Zeta, we’d like to highlight this Journal of Clinical Microbiology paper about saliva-based SARS-CoV-2 antibody testing. It was a collaboration between the Hope Clinic and investigators at Johns Hopkins, led by epidemiologist Christopher Heaney.

Infectious disease specialists Matthew Collins, Nadine Rouphael and several colleagues from Emory are co-authors. They organized the collection of saliva and blood samples from Emory COVID-19 patients at several stages: being tested, hospitalized, and recovered. Saliva samples were collected by having participants brush their gum line with a sponge-like collection device. More convenient than obtaining blood or sticking a swab up the nose!

Saliva collection instrument

The paper shows that antiviral antibody levels in saliva parallel what’s happening in patients’ blood. However, some forms of antibodies (IgM) appear less in saliva because of their greater molecular size. People who test positive do so by 10 days after symptom onset.

The authors conclude: “Saliva-based assays can be used to detect prior SARS-CoV-2 infection with excellent sensitivity and specificity and represent a practical, non-invasive alternative to blood for COVID-19 antibody testing…  A logical next step would be to perform a head-to-head comparison of this novel saliva assay with other antibody tests approved for clinical use.”

Read more

Posted on by Quinn Eastman in Immunology Leave a comment