The time Anna stayed up all night

Almost precisely a decade ago, a young Atlanta lawyer named Anna was returning to work, after being treated for an extraordinary sleep disorder. Her story has been told here at Emory and by national media outlets. Fast forward a decade to Idiopathic Hypersomnia Awareness Week 2018 (September 3-9), organized by Hypersomnolence Australia. What this post deals with is essentially the correction of a date at the tail end of Anna’s story, but one with long-term implications Read more

Mini-monsters of cardiac regeneration

Jinhu Wang’s lab is not producing giant monsters. They are making fish with fluorescent hearts. Lots of cool Read more

Why is it so hard to do good science?

Last week, Lab Land put out a Twitter poll, touching on the cognitive distortions that make it difficult to do high-quality science. Lots of people (almost 50) responded! Thank you! We had to be vague about where all this came from, because it was before the publication of the underlying research paper. Ray Dingledine, in Emory’s Department of Pharmacology, asked us to do the Twitter poll first, to see what answers people would give. Dingledine’s Read more

Mirko Paiardini

Update on SIV remission studies

Tab Ansari’s research at Emory/Yerkes on how an antibody treatment can push monkeys infected with SIV into remission was published in Science last year. At that time, Ansari told Lab Land about follow-up experiments to probe which immune cells are needed for this effect, which surprised many HIV/AIDS experts.

Ansari’s partner on the project, NIAID director Anthony Fauci, described the follow-up work in July at the International AIDS Society Conference in Paris. We thank Treatment Action Group’s Richard Jefferys for taking notes and posting a summary:

The approach that the researchers took was to deplete different types of immune cells in the animals controlling SIV viral load, then assess whether this led to an increase in viral replication. The experiments compared:

*Antibodies to the CD8 receptor alpha chain, which deplete CD8 T cells, natural killer T cells (NKTs) and natural killer (NK) cells

*Antibodies to the CD8 receptor beta chain, which deplete CD8 T cells

*Antibodies to CD20, which deplete B cells

According to Fauci’s slides, which are available online, there was a transient rebound in viral load with the CD8 alpha antibody and to a small degree with the CD8 beta. This suggests NKTs and NK cells are making a contribution to the observed control of SIV replication, but a role for CD8 T cells cannot be ruled out.

For comparison, a study from Guido Silvestri and colleagues at Yerkes published in 2016 found that treating SIV-infected monkeys with anti-CD8 antibodies, without stopping antiretroviral drugs, resulted in a rebound in virus levels. [They used ultrasensitive assays to detect the rebound.] However, the Yerkes team only used antibodies to the CD8 receptor alpha chain.

Read more

Posted on by Quinn Eastman in Immunology Leave a comment

Everything in moderation, especially TH17 cells

I was struck by one part of Mirko Paiardini’s paper that was published this week in Journal of Clinical Investigation. It describes a treatment aimed at repairing immune function in SIV-infected monkeys, with an eye toward helping people with HIV one day. One of the goals of their IL-21 treatment is to restore intestinal Th17 cells, which are depleted by viral infection. In this context, IL-21’s effect is anti-inflammatory.

However, Th17 cells are also involved in autoimmune disease. A recent Cell Metabolism paper from endocrinologist Roberto Pacifici and colleagues examines Th17 cells, with the goal of treating bone loss coming from an overactive parathyroid. In that situation, too many Th17 cells are bad and they need to be beaten back. Fortunately, both an inexpensive blood pressure medication and a drug under development for psoriasis seem to do just that.

Note for microbiome fans: connections between Th17 cells and intestinal microbes (segmented filamentous bacteria) are strengthening. It gets complicated because gut microbiota, together with Th17 cells, may influence metabolic disease and Th17-like cells are also in the skin — location matters.

Posted on by Quinn Eastman in Immunology Leave a comment