Tracing the start of COVID-19 in GA

At a time when COVID-19 appears to be receding in much of Georgia, it’s worth revisiting the start of the pandemic in early 2020. Emory virologist Anne Piantadosi and colleagues have a paper in Viral Evolution on the earliest SARS-CoV-2 genetic sequences detected in Georgia. Analyzing relationships between those virus sequences and samples from other states and countries can give us an idea about where the first COVID-19 infections in Georgia came from. We can draw Read more

Reddit as window into opioid withdrawal strategies

Drug abuse researchers are using the social media site Reddit as a window into the experiences of people living with opioid addiction. Abeed Sarker in Emory's Department of Biomedical Informatics has a paper in Clinical Toxicology focusing on the phenomenon of “precipitated withdrawal,” in collaboration with emergency medicine specialists from Penn, Rutgers and Mt Sinai. Precipitated withdrawal is a more intense form of withdrawal that can occur when someone who was using opioids starts medication-assisted treatment Read more

CROI: HIV cure report and ongoing research

The big news out of CROI (Conference on Retroviruses and Opportunistic Infections) was a report of a third person being cured of HIV infection, this time using umbilical cord blood for a hematopoetic stem cell transplant. Emory’s Carlos del Rio gave a nice overview of the achievement for NPR this morning. As del Rio explains, the field of HIV cure research took off over the last decade after Timothy Brown, known as “the Berlin patient,” Read more

Department of Pathology and Laboratory Medicine

Tracing the start of COVID-19 in GA

At a time when COVID-19 appears to be receding in much of Georgia, it’s worth revisiting the start of the pandemic in early 2020. Emory virologist Anne Piantadosi and colleagues have a paper in Viral Evolution on the earliest SARS-CoV-2 genetic sequences detected in Georgia.

Analyzing relationships between those virus sequences and samples from other states and countries can give us an idea about where the first COVID-19 infections in Georgia came from. We can draw a few conclusions, such as: there was no “Patient Zero”, at least here.

According to sequence analysis in the paper, multiple early introductions of SARS-CoV-2 into Georgia occurred, probably coming from Asia, weeks before the first officially reported case in March 2020. The authors suggest that the early focus on returning international travelers was misplaced, as opposed to broader testing of patients with COVID-19 symptoms.

“SARS-CoV-2 was likely spreading within the state for approximately three weeks prior to detection in either diagnostic or sequencing data,” the authors write.

Tree showing relationships between SARS-CoV-2 genetic sequences from Georgia and other states/countries

In Georgia, the subclade, or swarm of related viruses, that was dominant early on (called 19B) disappeared by the end of April, eclipsed by variants carrying the D614G mutation. This was an early hint – even before the emergence of B117/Alpha and other variants such as Delta and Omicron — that SARS-CoV-2 would evolve through competition. 

Similarly, sequence analysis from Washington state – the site of the first COVID-19 case identified in the United States — has shown that the first official case did not lead directly to the initial wave of infections there. The first wave actually fizzled out as a result of public health interventions, but other undetected infections in Washington in February 2020 led to sustained downstream transmission. 

The co-first authors of the Viral Evolution paper are Emory infectious disease specialist Ahmed Babiker and graduate student Michael Martin, with co-authors from the Centers of Disease Control and Prevention. The paper analyzes sequences from Emory Healthcare patients along with previously available sequences.

In a few cases, scientists attempted to trace relationships between infected patients who had recently travelled to other countries (Italy, Switzerland) or other states (Louisiana, Colorado), but the available data did not confirm all of those connections. 

Keep in mind that SARS-CoV-2 testing was very limited at the start of the pandemic, because of short supplies as well as FDA policy. More extensive virus sequencing efforts at Emory did not begin until mid-March 2020. With respect to viruses, we only see what we look for, and scientists can’t analyze samples they don’t have. If more samples were available from January or February, what would we find? Also, this paper’s analysis does not include any (known) samples from a February 2020 funeral in Albany, GA that was considered a “super-spreader event.” 

Two years later, has SARS-CoV-2 genomic surveillance improved? Piantadosi says that her team’s paper should be viewed in combination with their recent paperon the detection of the first Omicron case in Georgia, a woman who became sick in November 2021 while visiting Cape Town, South Africa.

 “That’s an example of where we did better,” Piantadosi says. “It does speak to how much surveillance has improved. We were conducting routine surveillance – not focusing on returning travelers.”

In the Omicron case, the woman in question first went to a community testing site, and those samples were not available for sequence analysis.

Piantadosi says that “we’ve achieved Phase I” – in that large hospitals or health systems such as Emory are collecting SARS-CoV-2 sequences, and the state Department of Public Health and large diagnostic services companies are also doing so. But as more SARS-CoV-2 testing is performed at home – generally a good thing for convenience and public health — surveillance for new variants needs to continue, she says.

Posted on by Quinn Eastman in Uncategorized Leave a comment

CROI: HIV cure report and ongoing research

The big news out of CROI (Conference on Retroviruses and Opportunistic Infections) was a report of a third person being cured of HIV infection, this time using umbilical cord blood for a hematopoetic stem cell transplant. Emory’s Carlos del Rio gave a nice overview of the achievement for NPR this morning.

As del Rio explains, the field of HIV cure research took off over the last decade after Timothy Brown, known as “the Berlin patient,” was cured after receiving a stem cell transplant for acute myeloid leukemia. His transplant donor had a mutation that made incoming blood and immune cells resistant to HIV infection.

For several reasons – safety, expense, and lack of immune compatibility — it is not practical to do hematopoetic stem cell transplants for everyone infected with HIV. Such transplants, which replace the cells that generate blood and immune cells, pose considerable risk.

“This is not a scaleable intervention,” del Rio told interviewer Leila Fadel. “This is very fascinating science, very cool science that will advance the field of HIV research, but this is also a very rare phenomenon.”

The transplant option comes into consideration when someone living with HIV is diagnosed with leukemia or lymphoma. But the CCR5 delta32 mutation that makes donor cells HIV-resistant is rare and found mainly in people of Northern European descent, and the process of finding a match has limitations. People of color are under-represented in registries for matching donors and recipients.

Using more malleable umbilical cord blood as a source for stem cell transplant may allow the approach to be offered to a larger group of people, including more people of color. Emory’s Vince Marconi told WebMD that cord blood could also allow patients to undergo a less grueling experience.

During the COVID-19 pandemic, the CROI conference has morphed into a premier immunology meeting, including presentations on COVID-19 and SARS-CoV-2, as well as HIV and viral hepatitis. As usual, Emory/Yerkes scientists had a strong presence at CROI.

In particular, researchers such as Mirko Paiardini and Ann Chahroudi have been investigating approaches to HIV/SIV cure in non-human primate models that avoid stem cell transplants. Instead, cancer immunotherapy drugs and HIV “latency reversal” agents (one is called AZD5582) wake up lurking virus-infected immune cells and flush them out. While clinical trials

Paiardini’s upcoming CROI talk on “Novel Immunotherapy-based Cure interventions” is scheduled for this Wednesday. While we can’t reveal the details ahead of time, Paiardini’s colleagues were highly impressed when he gave a presentation about the results in November.

Posted on by Quinn Eastman in Immunology 1 Comment

Poop substitute effective vs C. diff

A pill derived from human feces can effectively ward off Clostridium difficile diarrhea, according to the results of a clinical trial published in the New England Journal of Medicine.

Clinical microbiologist/infectious disease specialist Colleen Kraft and Emory patients contributed to the Phase III, 182 patient study, which was sponsored by Seres Therapeutics. Kraft is associate chief medical officer at Emory University Hospital and 2022 president-elect of the American Society for Microbiology.

Colleen Kraft, MD

Seres’ pill is an alternative to fecal microbiota transplant (FMT), a treatment for C.difficile that is both well-established and difficult to standardize. Everyone is intimately familiar with the material necessary for FMT, but its microbial components vary with the individual donor, diet and time. That presents some inconsistency and risk that has delayed FDA approval for the procedure.

Moving toward an “off the shelf” product, Seres takes stool from prescreened donors and treats the material with ethanol, killing some microbes and leaving behind bacterial spores that can compete for intestinal real estate with C. difficile. A previous study of Seres’ pill was unsuccessful, inspiring the headline “Sham poo washes out.” More information about the newer study and the company’s plans are in this Science article.

C. difficile colonization sometimes occurs after antibiotics deplete healthier forms of intestinal bacteria. Kraft and colleagues at Emory have been investigating whether FMT can prevent colonization by antibiotic-resistant bacteria in kidney transplant patients, who have (deliberately) dampened immune systems and need to take antibiotics.

Posted on by Quinn Eastman in Uncategorized Leave a comment

Intestinal bacteria modulate metabolism: link to obesity

The bacteria inside our guts are fine-tuning our metabolism, depending on our diet, and new research suggests how they accomplish it. Emory researchers have identified an obesity-promoting chemical produced by intestinal bacteria. The chemical, called delta-valerobetaine, suppresses the liver’s capacity to oxidize fatty acids.

The findings were recently published in Nature Metabolism.

“The discovery of delta-valerobetaine gives a potential angle on how to manipulate our gut bacteria or our diets for health benefits,” says co-senior author Andrew Neish, MD, professor of pathology and laboratory medicine at Emory University School of Medicine.

“We now have a molecular mechanism that provides a starting point to understand our microbiome as a link between our diet and our body composition,” says Dean Jones, PhD, professor of medicine at Emory University School of Medicine and co-senior author of the paper.

Gut bacteria produce delta-velerobetaine, which suppresses the liver’s capacity to oxidize fatty acids

The bacterial metabolite delta-valerobetaine was identified by comparing the livers of conventionally housed mice with those in germ-free mice, which are born in sterile conditions and sequestered in a special facility. Delta-valerobetaine was only present in conventionally housed mice.

In addition, the authors showed that people who are obese or have liver disease tend to have higher levels of delta-valerobetaine in their blood. People with BMI > 30 had levels that were about 40 percent higher. Delta-valerobetaine decreases the liver’s ability to burn fat during fasting periods. Over time, the enhanced fat accumulation may contribute to obesity.

Read more

Posted on by Quinn Eastman in Uncategorized Leave a comment

Signature of success for an HIV vaccine?

Efforts to produce a vaccine against HIV/AIDS have been sustained for more than a decade by a single, modest success: the RV144 clinical trial in Thailand, whose results were reported in 2009.

Now Emory, Harvard and Case Western Reserve scientists have identified a gene activity signature that may explain why the vaccine regimen in the RV144 study was protective in some individuals, while other HIV vaccine studies were not successful.

The researchers think that this signature, observed in immune cells in the blood after vaccination, could be used to design future vaccines that will have a better chance of providing protection against HIV infection.

“We may not need to take ‘shots in the dark’, when testing vaccine platforms or adjuvants for efficacy,” says senior author Rafick-Pierre Sekaly, PhD. “Instead, we can now identify adjuvants and/or vaccine regimens which more potently induce the activation of this signature.”

Rafick-Pierre Sekaly, PhD

The results, published this week in Nature Immunology, also contain hints on a contributing factor explaining why a recent HIV vaccine study conducted in South Africa (HVTN702) did not show a protective effect. HVTN702 was designed as a follow-up to RV144, but multiple parameters were different between the Thai and South African vaccine studies, such as the demographics of the participants, the adjuvant used, and the levels and varieties of HIV circulating.

“Our findings highlight one potential mechanism which may have contributed to the muted efficacy of HVTN702,” says Sekaly, professor of pathology and laboratory medicine at Emory University School of Medicine and a Georgia Research Alliance Eminent Scholar.

This mechanism involves the choice of adjuvant, a vaccine additive that enhances immune responses. While RV144 used the adjuvant alum (aluminum hydroxide), HVTN702 used the oil-based adjuvant MF59, also found in some influenza vaccines, to stimulate higher antibody production.

“There are multiple ways that a vaccine can promote protection and some of these do not involve antibodies,” Sekaly says. “Since MF59 failed to potently induce the gene signature we found to be associated with protection, this signature could guide us to mechanisms distinct from antibodies which could trigger protection from HIV-1.”

Read more

Posted on by Quinn Eastman in Immunology Leave a comment

Natural killer cells can help control virus in primate model of HIV/AIDS

A combination immunotherapy of IL-21 and IFN-alpha, when added to antiviral therapy, is effective in generating highly functional natural killer cells that can help control and reduce SIV (simian immunodeficiency virus) in animal models. This finding, from Yerkes National Primate Research Center scientists in collaboration with Institut Pasteur, could be key for developing additional treatment options to control HIV/AIDS.

The results were published in Nature Communications.

Antiviral therapy (ART) is the current leading treatment for HIV/AIDS, and is capable of reducing the virus to undetectable levels, but is not a cure and is hampered by issues such as cost, adherence to medication treatment plan and social stigma.

To reduce reliance on ART, the Yerkes, Emory and Institut Pasteur research team worked with 16 SIV-positive, ART-treated rhesus macaques. In most nonhuman primates (NHPs), including rhesus macaques, untreated SIV infection progresses to AIDS-like disease and generates natural killer (NK) cells with impaired functionality. In contrast, natural primate hosts of SIV do not progress to AIDS-like disease. Determining why natural hosts do not progress or how to stop the progression is a critical step in halting HIV in humans.

The researchers compared ART-only treated animals with animals that received ART, IL-21 and IFN-alpha to evaluate how the ART plus combination immunotherapy affected the amount of virus in the animals’ tissues.  

“Our results indicate ART plus combo-treated rhesus monkeys showed enhanced antiviral NK cell responses,” says first author Justin Harper, PhD, a senior research specialist and manager of the Paiardini research lab. “These robust NK cell responses helped clear cells in the lymph nodes, which are known for harboring the virus and enabling its replication and, therefore, the virus’ persistence. Targeting areas where the virus seeks refuge and knowing how to limit replication facilitate controlling HIV.”

HIV treatment has historically focused on the role of T cells in immunity, so harnessing NK cells opens up different avenues.

Mirko Paiardini, PhD

“This proof-of-concept study in rhesus monkeys, which progress to AIDS-like disease in the absence of ART, demonstrates how certain NK cell activities can contribute to controlling the virus,” says Mirko Paiardini, PhD, an associate professor of pathology and laboratory Medicine at Emory University and a researcher at Yerkes. “This opens the door to designing additional treatment strategies to induce SIV and HIV remission in the absence of ART, and, ultimately, reducing the burden HIV is to individuals, families and the world.”

Read more

Posted on by Quinn Eastman in Immunology Leave a comment

More evidence for autoantibodies in severe COVID-19

A recent paper from Emory pathologist Cheryl Maier and colleagues provides more evidence for autoantibodies in critically ill COVID-19 patients. Autoantibodies are signs that the immune system attacking the body itself, and are features of diseases such as lupus and rheumatoid arthritis. They have been proposed as an explanation for the severity of some acute COVID-19 cases, as well as continued symptoms in long COVID.

Generally, antibodies are a good thing, and a major goal of COVID-19 vaccination is to drive the immune system to generate protective antibodies against the coronavirus. With autoantibodies and COVID, the idea is that intense inflammation coming from viral infection is causing immune cells to become confused. Not every COVID-19 patient’s immune system goes off the rails, but the train wreck seems to happen more often in COVID-19.

Last year, immunologist Ignacio Sanz’s lab at Emory demonstrated that patients with severe COVID-19 display signs of immune dysregulation similar to those seen in lupus. A follow-up preprint found the suspected autoantibodies, and several other labs have observed autoantibodies in COVID-19 that may be sabotaging antiviral responses or perturbing blood clotting. Now, an active topic of investigation is whether the autoantibodies last longer or don’t diminish as quickly in long COVID. Stay tuned.

This image has an empty alt attribute; its file name is MaierC.jpg
Cheryl Maier, MD, PhD

However, in the current paper in Cell Reports Medicine, autoantibodies were also found in most control samples from intensive care unit patients with pneumonia or sepsis, who are experiencing a state of systemic inflammation comparable to severe COVID-19.

“It’s a reminder that autoantibodies are not necessarily unique to COVID,” Maier says. “They may be more dramatic in COVID, but we see autoantibodies associated with other severe diseases too.”

Maier is medical director for Emory’s Special Coagulation Laboratory, and her team came to the autoimmunity question from a side angle. They were investigating blood clots and hyperviscosity in COVID-19 patients, and wanted to check whether high concentrations of antibodies might be an explanation. Antibodies are proteins, after all, and if someone’s blood is full of them, they thicken it.

Read more

Posted on by Quinn Eastman in Immunology Leave a comment

The earliest spot for Alzheimer’s blues

The Emory laboratories of Keqiang Ye and David Weinshenker recently published a paper on ApoE, the most common genetic risk factor for late-onset Alzheimer’s. The findings, published in Acta Neuropathologica, suggest how the risk-conferring form of ApoE (ApoE4) may exacerbate pathology in the locus coeruleus.

The LC, part of the brainstem, is thought to be the first region of the brain where pathological signs predicting future cellular degeneration show up. The LC (“blue spot”) gets its name from its blue color; it regulates attention, arousal, stress responses and cognition. The LC is also the major site for production of the neurotransmitter norepinephrine.

ApoE, which packages and transports cholesterol, was known to modulate the buildup of the toxic protein fragment beta-amyloid, but this proposed mechanism goes through Tau. Tau is the other pesky protein in Alzheimer’s, forming neurofibrillary tangles that are the earliest signs of degeneration in the brain. Tau pathology correlates better with dementia and cognitive impairments than beta-amyloid, which several proposed Alzheimer’s therapeutics act on.

The new paper shows that ApoE4 inhibits the enzyme VMAT2, which packages norepinephrine into vesicles. As a result, free/unpackaged norepinephrine lingers in the cytoplasm, and forms a harmful oxidative byproduct that triggers enzymatic degradation of Tau. Thus, norepinephrine may have a “too hot to handle” role in Alzheimer’s – with respect to the LC — somewhat analogous to dopamine in Parkinson’s, which has also been observed to form harmful byproducts. Dopamine and norepinephrine are similar chemically and both are substrates of VMAT2, so this relationship is not a stretch.

Model of how norepinephrine byproduct DOPEGAL triggers locus coeruleus degeneration through Tau

The Emory results make the case for inhibiting the enzyme AEP (asparagine endopeptidase), also known as delta-secretase, as an approach for heading off Alzheimer’s. AEP is the Tau-munching troublemaker, and is activated by the norepinephrine byproduct DOPEGAL

An alternative approach may be to inhibit monoamine oxidase (MAO-A above) enzymes — several old-school antidepressants are available that accomplish this.

At Emory, Ye’s lab has been tracing connections for AEP/delta-secretase in the last few years, and Weinshenker’s group is expert on all things norepinephrine, so the collaboration makes sense.

Delta-secretase’s name positions it in relation to beta- and gamma-secretase, enzymes for processing APP (amyloid precursor protein) into beta-amyloid, but AEP/delta-secretase has the distinction of having its fingers in both the beta-amyloid and Tau pies.

We have to caution that most of the recent research on delta-secretase has been in mouse models. Ye’s collaborators in China have been testing an inhibitor of delta-secretase in animals but it has not reached human studies yet, he reports. That said, this work has been oriented toward figuring out the web of interactions between known players such as ApoE and Tau, whose importance has been well-established in studies of humans with Alzheimer’s.

Posted on by Quinn Eastman in Neuro Leave a comment

Strengthening SARS-CoV-2 genomic surveillance: support from CDC, private foundations

As part of an effort to strengthen genomic surveillance for emerging strains of SARS-CoV-2, the Centers for Disease Control and Prevention (CDC) has awarded a contract to Emory University researchers to characterize viral variants circulating in Georgia.

The two-year contract is part of the SPHERES (SARS-CoV-2 Sequencing for Public Health Emergency Response, Epidemiology and Surveillance) initiative, with roughly $620,000 in total costs. The principal investigator is Anne Piantadosi, MD, PhD, assistant professor of pathology and laboratory medicine, with co-investigator Mehul Suthar, PhD, assistant professor of pediatrics (infectious diseases).

Both Piantadosi and Suthar are affiliated with Emory University School of Medicine and Emory Vaccine Center. Additional Emory partners include assistant professor of medicine Ahmed Babiker, MBBS, assistant professor of medicine Jesse Waggoner, MD and assistant professor of biology Katia Koelle, PhD.

“We are analyzing SARS-CoV-2 genomes from patients in Georgia to understand the timing and source of virus introduction into our community,” Piantadosi says. “We want to know whether there have been population-level changes in the rates of viral spread, and whether there are associations between viral genotype, viral phenotype in vitro, and clinical phenotype or clinical outcome.”

Read more

Posted on by Quinn Eastman in Immunology, Uncategorized 1 Comment

Baricitinib effectively reduces COVID-19 lung inflammation in NHP model

In the race to halt the COVID-19 pandemic, researchers at Yerkes National Primate Research Center of Emory University share two important findings from their latest peer-reviewed, published study in Cell.

Rhesus monkeys are a valid animal model for COVID-19 studies because the way they experience and respond to the virus has comparable similarities to the way the virus affects humans, the researchers say. And baricitinib, an anti-inflammatory medication that is FDA-approved for rheumatoid arthritis, is remarkably effective in reducing the lung inflammation COVID-19 causes when the medication is started early after infection.

The study results have immediate and important implications for treating patients with COVID-19. Baricitinib will be compared against the steroid dexamethasone in a NIAID-sponsored clinical trial called ACTT-4 (Adaptive COVID-19 Treatment Trial), which started in November.

Mirko Paiardini, PhD, a researcher in Yerkes’ Microbiology and Immunology division, and his team selected rhesus macaques as the animal model because they expected the monkeys would mimic the disease course in humans, including the virus traveling to the upper and lower airways, and causing high levels of inflammation in the lungs. The team randomized eight rhesus macaques into two groups – a control and a treatment group; the animals in the treatment group received baricitinib.

“Our results showed the medication reduced inflammation, decreased inflammatory cells in the lungs and, ultimately, limited the virus’ internal path of destruction,” Paiardini says. “Remarkably, the animals we treated with baricitinib rapidly suppressed the processes responsible for inducing lung inflammation, thus elevating baricitinib for consideration as a frontline treatment for COVID-19 and providing insights on the way the drug works and its effectiveness.”

The FDA recently granted baricitinib emergency use authorization in combination with remdesivir based on the results of the ACTT-2 findings. “Our study was under way concurrently and, now, solidifies the importance of baricitinib in treating COVID-19,” Paiardini adds.

Co-senior author Raymond Schinazi, PhD, DSc, inventor of the most commonly used HIV/AIDS drugs to prevent progression of the disease and death, says: “Our study shows the mechanisms of action are consistent across studies with monkeys and clinical trials with humans. This means the nonhuman primate model can provide enough therapeutic insights to properly test anti-inflammatory and other COVID-19 therapies for safety and effectiveness.”

Schinazi is the Frances Winship Walters Professor of Pediatrics at Emory University School of Medicine and is affiliated with Yerkes.

“Ray and his group have been investigating the potential of anti-inflammatory drugs, such as baricitinib, for years in the context of another infection, HIV, in which inflammation is a key cause of sickness and death,” Paiardini says. “Our laboratories have collaborated for years to test therapeutics in the nonhuman primate model of HIV infection, thus placing us in a unique position when COVID-19 hit the U.S. to focus our combined expertise and efforts to halt the virus. It took only a phone call between the two of us to switch gears, begin work to create a reliable and robust monkey model of COVID-19 at Yerkes and test the potential of drugs to block inflammation.”

Tim Hoang, first author and Emory doctoral student in the Immunology and Molecular Pathogenesis Program, says: “It was exciting to be at the forefront of the response to COVID-19 and to be part of this research team that involved collaboration from Yerkes and Emory infectious disease experts, geneticists, chemists, pathologists and veterinarians.”

Co-first author and Emory postdoctoral fellow Maria Pino, PhD, emphasizes: “We knew Yerkes was uniquely suited to conduct this study because of the research and veterinary expertise, specialized facilities and animal colony, and our team’s commitment to providing better treatment options for people who have COVID-19.”

The research team plans to conduct further studies to better understand the inflammation the virus causes and to develop more targeted approached to mitigate the damage COVID-19 leaves behind.

Steven Bosinger, PhD, co-senior author, and his research team conducted the genomic analyses that helped unravel the process by which baricitinib reduces inflammation. “One of the most exciting aspects of this project was the speed genomics brought to the collaborative research,” says Bosinger. “Eight months ago, we began using genomics to accelerate the drug screening process in order to identify treatable, molecular signatures of disease between humans and model organisms, such as the monkeys in this study, In addition to determining the effectiveness of baricitinib, this study highlights Emory researchers’ commitment to improving human health and, in this case, saving human lives.”

Bosinger is assistant professor, Department of Pathology & Laboratory Medicine, Emory School of Medicine (SOM) and Emory Vaccine Center (EVC); director, Yerkes Nonhuman Primate Genomics Core and a researcher in Yerkes’ Division of Microbiology and Immunology. 

Some of the others on the Emory research team include: Arun Boddapati (co-first author), Elise Viox, Thomas Vanderford, PhD, Rebecca Levit, MD, Rafick Sékaly, PhD, Susan Ribeiro, PhD, Guido Silvestri, MD, Anne Piantadosi, MD, PhD, Sanjeev Gumber, BVSc, MVSc, PhD, DACVP, Sherrie Jean, DVM, DACLAM, and Jenny Wood, DVM, DACLAM. Jacob Estes, PhD, at Oregon Health & Science University also collaborated.

Paiardini says, “So many colleagues had a key role in this study. First authors Tim and Maria as well as Yerkes veterinary and animal care personnel who worked non-stop for months on this project. This truly has been a collaborative effort at Emory University to help improve lives worldwide.”

This study was funded by the National Institutes of Health, Emory University’s COVID-19 Molecules and Pathogens to Populations and Pandemics Initiative Seed Grant, Yerkes’ base grant, which included support for the center’s Coronavirus Pilot Research Project grants, and Fast Grants.

Grant amounts (direct + indirect) are:

NIH R37AI141258, $836,452/yr (2018-23)

NIH R01AI116379, $783,714/yr (2015-20 + 2021 NCE)

NIH P51 OD011132, $10,540,602/yr (2016-20)

U24 AI120134 $681,214/yr (2020-2025)

S10OD026799 $985,030/yr (2019-2020)

Emory University COVID-19 Molecules and Pathogens to Populations and Pandemics Initiative Seed Grant, $150,000/1 yr

Fast Grants #2144, $100,000/1 yr

Note: Only a portion of the NIH grant funding was applied to the study reported in this news release. 

Posted on by Quinn Eastman in Immunology Leave a comment