Saliva-based SARS-CoV-2 antibody testing

As the Atlanta area recovers from Zeta, we’d like to highlight this Journal of Clinical Microbiology paper about saliva-based SARS-CoV-2 antibody testing. It was a collaboration between the Hope Clinic and investigators at Johns Hopkins, led by epidemiologist Christopher Heaney. Infectious disease specialists Matthew Collins, Nadine Rouphael and several colleagues from Emory are co-authors. They organized the collection of saliva and blood samples from Emory COVID-19 patients at several stages: being tested, hospitalized, and recovered. Read more

Peeling away pancreatic cancers' defenses

A combination immunotherapy approach that gets through pancreatic cancers’ extra Read more

Immune cell activation in severe COVID-19 resembles lupus

In severe cases of COVID-19, Emory researchers have been observing an exuberant activation of B cells, resembling acute flares in systemic lupus erythematosus (SLE), an autoimmune disease. The findings point towards tests that could separate some COVID-19 patients who need immune-calming therapies from others who may not. It also may begin to explain why some people infected with SARS-CoV-2 produce abundant antibodies against the virus, yet experience poor outcomes. The results were published online on Oct. Read more

antibodies

Saliva-based SARS-CoV-2 antibody testing

As the Atlanta area recovers from Zeta, we’d like to highlight this Journal of Clinical Microbiology paper about saliva-based SARS-CoV-2 antibody testing. It was a collaboration between the Hope Clinic and investigators at Johns Hopkins, led by epidemiologist Christopher Heaney.

Infectious disease specialists Matthew Collins, Nadine Rouphael and several colleagues from Emory are co-authors. They organized the collection of saliva and blood samples from Emory COVID-19 patients at several stages: being tested, hospitalized, and recovered. Saliva samples were collected by having participants brush their gum line with a sponge-like collection device. More convenient than obtaining blood or sticking a swab up the nose!

Saliva collection instrument

The paper shows that antiviral antibody levels in saliva parallel what’s happening in patients’ blood. However, some forms of antibodies (IgM) appear less in saliva because of their greater molecular size. People who test positive do so by 10 days after symptom onset.

The authors conclude: “Saliva-based assays can be used to detect prior SARS-CoV-2 infection with excellent sensitivity and specificity and represent a practical, non-invasive alternative to blood for COVID-19 antibody testing…  A logical next step would be to perform a head-to-head comparison of this novel saliva assay with other antibody tests approved for clinical use.”

Read more

Posted on by Quinn Eastman in Immunology Leave a comment

Several ways to survey for SARS-CoV-2 exposure

How many people out there have been exposed to SARS-CoV-2? It’s a tricky question, once you think about all the people who have experienced COVID-19 symptoms over the last several months, but didn’t go to the hospital. And there’s a murkier penumbra of people who may have fended off the virus with a minor immune skirmish.

A recent Emerging Infectious Diseases paper from Emory investigators includes antibody tests on a group of more than 100 adults in the Atlanta area who experienced mild flu-like symptoms this spring, but couldn’t get tested for SARS-CoV-2 itself.

A sizable fraction (22 to 48 percent, depending on when they provided blood samples) had elevated levels of IgM against the coronavirus. IgM is the “rookie” antibody produced when the immune system is first encountering something, as opposed to the more seasoned IgG, which appears later in an immune response and tended to rise only in people who were hospitalized. The Emory authors came to a conclusion that others are also reaching:

“Examining IgM and IgG against multiple SARS-CoV-2–related antigens may thus better inform natural history and vaccine studies than any one antibody.”

To answer these kinds of questions more comprehensively, investigators will need to go broader. For example, this week the American Red Cross published data on what proportion of its blood donors have antibodies against SARS-CoV-2. About 3 percent of first-time donors did, using their criteria.

For big answers, we can look to studies such as Emory’s COVID-Vu, a nationwide population-based study using antibody and virus tests taken at home. Rollins School of Public Health researchers received a $6.6 million grant to launch the study this summer. This type of study is designed to cover everyone, whether they were sick or not.

Read more

Posted on by Quinn Eastman in Uncategorized Leave a comment

Can blood from coronavirus survivors save the lives of others?

Donated blood from COVID-19 survivors could be an effective treatment in helping others fight the illness – and should be tested more broadly to see if it can “change the course of this pandemic,” two Emory pathologists say.

The idea of using a component of survivors’ donated blood, or “convalescent plasma,” is that antibodies from patients who have recovered can be used in other people to help them defend against coronavirus.

Emory pathologists John Roback, MD, PhD and Jeannette Guarner, MD, wrote about the prospects of using the donated blood in a commentary published in JAMA. Their article accompanied a small study in China of five patients on ventilators whose condition improved after they were treated with convalescent plasma.

“Deploying passive antibody therapies against the rapidly increasing number of COIVD-19 cases provides an unprecedented opportunity to perform clinical studies of the efficacy of this treatment against a viral agent,” the two wrote. “If the results of rigorously conducted investigations, such as a large-scale randomized clinical trial, demonstrate efficacy, use of this therapy also could help change the course of this pandemic.”

The patients in Shenzhen were also treated with other antiviral and antiinflammatory agents, and the study was too small to come to definite conclusions. Still, the Emory authors say, the Shenzhen study provides an example of an approach that should be tested on a larger scale. Read more

Posted on by Wayne Drash in Immunology, Uncategorized Leave a comment

Antibody diversity mutations come from a vast genetic library

Vaccine scientists want to nudge the immune system into producing antibodies that will protect us from infection. In doing so, they are playing with fire – in a limited way. With every healthy antibody response, a process of internal evolution takes place among B cells, the immune cells that produce antibodies. It’s called “somatic hypermutation.”

In the lymph nodes, individual B cells undergo an accelerated rate of mutation. It’s as if those B cells’ DNA were being cooked with radiation or mutagenic chemicals – but only in a few genes. Then the lymph nodes select the B cells with high-affinity antibodies.

Gordon Dale, a just-defended graduate student from Joshy Jacob’s lab in Emory Vaccine Center, has a new paper in Journal of Immunology that sheds light on how somatic hypermutation takes place in both mice and humans.

In particular, Dale and Jacob found that the mutations that occur in human and mouse antibody genes are not random. They appear to borrow information from gene segments that are leftovers from the process of assembling antibody DNA in B cells.

In a mix and match process called VDJ recombination, B cells use one of many V, D, and J segments to form their antibody genes. What Dale and Jacob were looking at occurs after the VDJ step, when B cells get stimulated as part of an immune response.

They analyzed the patterns of mutations in human and mouse antibody genes, and found that mutations tend to come together, in a way that suggests that they are being copied from leftover V segments. They call this pattern “tem Read more

Posted on by Quinn Eastman in Immunology Leave a comment

Antibody production: an endurance sport

Antibodies defend us against infections, so they often get described as weapons. And the cells that produce them could be weapon factories?. To understand recent research from immunologist Jerry Boss’s lab, a more appropriate metaphor is the distinction between sprinting and long-distance running.

Graduate student Madeline Price in Boss’s lab has been investigating how antibody-producing cells use glucose – the simple sugar– and how the cells’ patterns of gene activity reflect that usage. Cells can use glycolysis, which is inefficient but fast, analogous to sprinting, or oxidative phosphorylation, generating much more energy overall, more like long distance running.

As Boss and Price point out:

Immunology + Molecular Pathogenesis graduate student Madeline Price

Glycolytic metabolism produces 2 molecules of ATP per molecule of glucose, while oxidative phosphorylation produces 36 molecules of ATP from the same starting glucose molecule. Where oxidative phosphorylation generates more energy from ATP, glycolysis generates metabolic intermediates that are also useful for rapid cellular proliferation.

In their recent paper in Cell Reports, they lay out what happens to B cells, which can go on to become antibody secreting cells (ASCs), after an initial encounter with bacteria. The B cells first proliferate and upregulate both glycolysis and oxidative phosphorylation. However, upon differentiating, the cells shift their preference to oxidative phosphorylation. Read more

Posted on by Quinn Eastman in Immunology Leave a comment

Lampreys and the reverse spy problem

Call it the reverse spy problem. If you were a spy who wanted to gain access to a top secret weapons factory, your task would be to fit in. The details of your employee badge, for example, should look just right.

As described in this 2016 JCI Insight paper, Emory and University of Toronto investigators wanted to do the opposite. They were aiming to develop antibody tools for studying and manipulating plasma cells, which are the immune system’s weapons factories, where antibody production takes place. The situation is flipped when we’re talking about antibodies. Here, the goal is to stand out.

Do these guys look like good spies?

Monoclonal antibodies are classic biomedical tools (and important anticancer drugs). But it’s tricky to develop antibodies against the places where antibodies themselves are made, because of the way the immune system develops. To guard against autoimmune disease, antibodies that would react against substances in the body are often edited out.

To get around this obstacle, researchers used organisms that have very different immune systems from humans: lampreys. Emory’s Max Cooper and colleagues had already shown how lampreys have molecules — variable lymphocyte receptors or VLRs — that function like antibodies, but don’t look like them, in terms of their molecular structure.

From the paper:

We reasoned that the unique protein architecture of VLR Abs and the great evolutionary distance between lampreys and humans would allow the production of novel VLRB Abs against biomedically relevant antigens against which conventional Abs are not readily produced because of structural or tolerogenic constraints.

Senior author Goetz Ehrhardt, now at University of Toronto, used to be in Cooper’s lab, and their two labs worked together on the JCI Insight paper. Read more

Posted on by Quinn Eastman in Immunology Leave a comment

How antiviral antibodies become part of immune memory

Weapons production first, research later. During wartime, governments follow these priorities, and so does the immune system.

When fighting a bacterial or viral infection, an otherwise healthy person will make lots of antibodies, blood-borne proteins that grab onto the invaders. The immune system also channels some of its resources into research: storing some antibody-making cells as insurance for a future encounter, and tinkering with the antibodies to improve them.

In humans, scientists know a lot about the cells involved in immediate antibody production, called plasmablasts, but less about the separate group of cells responsible for the “storage/research for the future” functions, called memory B cells. Understanding how to elicit memory B cells, along with plasmablasts, is critical for designing effective vaccines.

EbolaBcells

Activated B cells (blue) and plasmablasts (red) in patients hospitalized for Ebola virus infection, with a healthy donor for comparison. From Ellebedy et al Nature Immunology (2016).

Researchers at Emory Vaccine Center and Stanford’s Department of Pathology have been examining the precursors of memory B cells, called activated B cells, after influenza vaccination and infection and during Ebola virus infection. The Ebola-infected patients were the four who were treated at Emory University Hospital’s Serious Communicable Disease Unit in 2014.

The findings were published Monday, August 15 in Nature Immunology.

“Ebola virus infection represents a situation when the patients’ bodies were encountering something they’ve never seen before,” says lead author Ali Ellebedy, PhD, senior research scientist at Emory Vaccine Center. “In contrast, during both influenza vaccination and infection, the immune system generally is relying on recall.”

Unlike plasmablasts, activated B cells do not secrete antibodies spontaneously, but can do so if stimulated. Each B cell carries different rearrangements in its DNA, corresponding to the specificity and type of antibody it produces. The rearrangements allowed Ellebedy and his colleagues to track the activated B cells, like DNA bar codes, as an immune response progresses. Read more

Posted on by Quinn Eastman in Immunology Leave a comment

Mulligan WABE interview on Ebola vaccine research

A recent WABE “Closer Look” interview with Mark Mulligan, executive director of the Emory Vaccine Center’s Hope Clinic, covers a lot of ground. It starts off with a segment — also aired on Marketplace — from reporter Michell Eloy, who visited the Hope Clinic’s lab. We hear a machine processing blood samples from a study testing an experimental Ebola vaccine and a roundup of Ebola vaccine developments.

We also hear from Carl Davis, postdoc in Rafi Ahmed’s lab, who is part of the DARPA-funded team research project studying the utility of antibodies from Ebola survivors. [Other recent news on this topic from The Scientist.]

Then, reporters Rose Scott and Jim Burress discuss several different Ebola vaccines with Mulligan. One is based on chimpanzee adenovirus, was tested at the Hope Clinic and elsewhere in the USA and the UK, and then in Liberia. While this vaccine was safe and it appears to stimulate the immune system appropriately, the outbreak fizzled out (a good thing!) before it was possible to tell if the vaccine protected people from Ebola infection. Read more

Posted on by Quinn Eastman in Immunology Leave a comment

Galectins defend against bacterial wolves in sheeps’ clothing

To prevent auto-immune attack, our bodies avoid making antibodies against molecules found on our own cells. That leaves gaps in our immune defenses bacteria could exploit. Some of those gaps are filled by galectins, a family of proteins whose anti-bacterial properties were identified by Emory scientists.

In the accompanying video, Sean Stowell, MD, PhD and colleagues explain how galectins can be compared to sheep dogs, which are vigilant in protecting our cells (sheep) against bacteria that may try to disguise themselves (wolves).

The video was produced to showcase the breadth of research being conducted within Emory’s Antibiotic Resistance Center. Because of their ability to selectively target some kinds of bacteria, galectins could potentially be used as antibiotics to treat infections without wiping out all the bacteria in the body. Read more

Posted on by Quinn Eastman in Immunology Leave a comment

Decoding lupus using DNA clues

People with systemic lupus erythematosus can experience a variety of symptoms, such as fatigue, joint pain, skin rashes and kidney problems. Often the symptoms come and go in episodes called flares. In lupus, the immune system goes haywire and produces antibodies that are directed against the body itself.

A team of Emory scientists has been investigating some fundamental questions about lupus: where do the cells that produce the self-reactive antibodies come from? Are they all the same?

In the accompanying video, Kelli Williams, who helps study the disease and has lupus herself, describes what a flare feels like. In addition, Emory researchers Iñaki Sanz, MD and Chris Tipton, PhD explain their findings, which were published this summer in Nature Immunology.

Judging by the number and breadth of abstracts on lupus at the Department of Medicine Research Day (where Tipton won 1st place for basic science poster), more intriguing findings are in the pipeline. Goofy Star Wars metaphors and more explanations of the science here.

Posted on by Quinn Eastman in Immunology Leave a comment