Update on SIV remission studies

Recently presented insights on how an antibody used to treat intestinal diseases can suppress Read more

Granulins treasure not trash - potential FTD treatment strategy

Granulins are of interest to neuroscientists because mutations in the granulin gene cause frontotemporal dementia (FTD). However, the functions of granulins were previously Read more

Blood vessels and cardiac muscle cells off the shelf

How to steer induced pluripotent stem cells into becoming endothelial cells, which line blood Read more

Four biomedical research topics to watch in 2017

HIV/AIDS

The example of the “Berlin patient,” the only person ever cured of HIV infection, has energized HIV/AIDS researchers around the world. They are exploring a variety of tactics to attack the HIV reservoir in infected people, ranging from gene editing to “kick and kill.” A host of Emory/Yerkes researchers are among those pushing this forward.

This past year, an Emory/NIAID team led by Tab Ansari showed that a gentle, antibody-based approach could suppress SIV infection in macaques for extended periods, which surprised many in the field. The human test of this approach is now underway at the National Institutes of Health.

On the preventive vaccine side, a large scale efficacy study recently begun in South Africa, the first in seven years. Geovax’s Emory-rooted technology continues to advance in clinical studies. Further back in the pipeline, Yerkes researchers are testing innovative approaches, such as Rama Amara’s milk-bacteria-based mucosal vaccine and the potent nanoparticle adjuvants developed by Bali Pulendran’s group.

Zika

Despite the World Health Organization’s declaration in November that the public health emergency is over, Zika infection is still driving brain-related birth defects in several countries. Expect to hear more about Zika epidemiology and vaccine research, including from Emory investigators, next year.

In contrast with HIV, which seems to escape from almost anything we or our immune systems throw at it, Zika is doable, scientists think. At a Vaccine Dinner Club talk in September, Harvard’s Dan Barouch made the case that Zika is a slam dunk, immunologically. Two big questions remain: does dengue get in the way? And can vaccine makers test quickly and distribute widely?

FMT for antibiotic-resistant infections

Emory physicians have been leaders in developing fecal microbiota transplant as a remedy for recurrent Clostridium dificile infection. This form of diarrhea, which can be life-threatening, sometimes arises as a result of antibiotics that wipe out the helpful bacteria that live in the intestines, paving the way for “C diff.”

Now the Emory team (Colleen Kraft/Tanvi Dhere/Aneesh Mehta/Rachel Friedman-Moraco) is testing whether FMT could prevent other antibiotic-resistant infections besides C diff. This approach will be examined in a group of patients that tends to have a lot of antibiotic exposure: kidney transplant recipients. The team’s first publication on this topic from 2014 is here. Read more

Posted on by Quinn Eastman in Immunology, Neuro Leave a comment

Threading the RSV needle: live attenuated vaccine effective in animals

Crafting a vaccine against RSV (respiratory syncytial virus) has been a minefield for 50 years, but scientists believe they have found the right balance.

A 3-D rendering of a live-attenuated respiratory syncytial virus (RSV) particle, captured in a near-to-native state by cryo-electron tomography. Surface glycoproteins (yellow) are anchored on the viral membrane (cyan), with ribonucleoprotein complexes inside (red). Image courtesy of Zunlong Ke and Elizabeth Wright.

Researchers at Emory University School of Medicine and Children’s Healthcare of Atlanta have engineered a version of RSV that is highly attenuated – weakened in its ability to cause disease – yet potent in its ability to induce protective antibodies.

The researchers examined the engineered virus using cryo-electron microscopy and cryo-electron tomography techniques, and showed that it is structurally very similar to wild type virus. When used as a vaccine, it can protect mice and cotton rats from RSV infection.

The results were published this morning in Nature Communications.

“Our paper shows that it’s possible to attenuate RSV without losing any immunogenicity,” says senior author Martin Moore, PhD, associate professor of pediatrics at Emory University School of Medicine and a Children’s Healthcare of Atlanta Research Scholar. “This is a promising live-attenuated vaccine candidate that merits further investigation clinically.”

The next steps for this vaccine are to produce a clinical grade lot and conduct a phase 1 study of safety and immunogenicity in infants, Moore says. Read more

Posted on by Quinn Eastman in Immunology Leave a comment

How “twist my arm” engages the brain

Listening to metaphors involving arms or legs loops in a region of the brain responsible for visual perception of those body parts, scientists have discovered.

The finding, recently published in Brain & Language, is another example of how neuroscience studies are providing evidence for “grounded cognition” – the idea that comprehension of abstract concepts in the brain is built upon concrete experiences, a proposal whose history extends back millennia to Aristotle.

The EBA was shown in 2001 to respond selectively to images of the human body by Nancy Kanwisher and colleagues.

When study participants heard sentences that included phrases such as “shoulder responsibility,” “foot the bill” or “twist my arm”, they tended to engage a region of the brain called the left extrastriate body area or EBA.

The same level of activation was not seen when participants heard literal sentences containing phrases with a similar meaning, such as “take responsibility” or “pay the bill.”  The study included 12 right-handed, English-speaking people, and blood flow in their brains was monitored by functional MRI (magnetic resonance imaging).

“The EBA is part of the extrastriate visual cortex, and it was known to be involved in identifying body parts,” says senior author Krish Sathian, MD, PhD, professor of neurology, rehabilitation medicine, and psychology at Emory University.  “We found that the metaphor selectivity of the EBA matches its visual selectivity.” Read more

Posted on by Quinn Eastman in Neuro Leave a comment

Neuroscientists show hippocampus also has important role in emotional regulation

A region of the brain called the hippocampus is known for its role in memory formation. Scientists at Yerkes National Primate Research Center, Emory University are learning more about another facet of hippocampal function: its importance in the regulation and expression of emotions, particularly during early development.

Using a nonhuman primate model, their findings provide insight into the mechanisms of human psychiatric disorders associated with emotion dysregulation, such as PTSD (post-traumatic stress disorder) and schizophrenia. The results were published online recently by the journal Psychoneuroendocrinology.

“Our findings demonstrate that damage to the hippocampus early in life leads to increased anxiety-like behaviors in response to an unfamiliar human,” says research associate Jessica Raper, PhD, first author of the paper. “However, despite heightened anxious behavior, cortisol responses to the social stress were dampened in adulthood.”

The hormone cortisol modulates metabolism, the immune system and brain function in response to stress. Reduced hippocampal volume and lower cortisol response to stressors have been demonstrated as features of and risk factors for PTSD, Raper says. Also, the dampened daily rhythms of cortisol seen in the nonhuman primates with hippocampal damage resemble those reported in first-episode schizophrenia patients.

Follow-up studies could involve temporary interference with hippocampus function using targeted genetic techniques, she says. Read more

Posted on by Quinn Eastman in Neuro Leave a comment

Unlocking a liver receptor puzzle

Imagine a key that opens a pin tumbler lock.  A very similar key can also fit into the lock, but upside down in comparison to the first key.

Biochemist Eric Ortlund and colleagues have obtained analogous results in their study of how potential diabetes drugs interact with their target, the protein LRH-1. Their research, published in Journal of Biological Chemistry, shows that making small changes to LRH-1-targeted compounds makes a huge difference in how they fit into the protein’s binding pocket.

First author Suzanne Mays, a graduate student in Emory's MSP program

First author Suzanne Mays, a graduate student in Emory’s MSP program

This research was selected as “Paper of the Week” by JBC and is featured on the cover of the December 2 issue.

LRH-1 (liver receptor homolog-1) is a nuclear receptor, a type of protein that turns on genes in response to small molecules like hormones or vitamins.  LRH-1 acts in the liver to regulate metabolism of fat and sugar.

Previous research has shown that activating LRH-1 decreases liver fat and improves insulin sensitivity in mice. Because of this, many research teams have been trying to design synthetic compounds that activate this protein, which could have potential to treat diabetes and nonalcoholic fatty liver disease. This has been a difficult task, because not much is known about how synthetic compounds interact with LRH-1 and switch it into the active state. Read more

Posted on by Quinn Eastman in Uncategorized Leave a comment

Insane in the membrane – inflamed in the brain

Inflammation in the brain is a feature of several neurological diseases, ranging from Parkinson’s and Alzheimer’s to epilepsy. Nick Varvel, a postdoc with Ray Dingledine’s lab at Emory, was recently presenting his research and showed some photos illustrating the phenomenon of brain inflammation in status epilepticus (prolonged life-threatening seizures).

The presentation was at a Center for Neurodegenerative Disease seminar; his research was also published in PNAS and at the 2016 Society for Neuroscience meeting.green-red-brain

Varvel was working with mice in which two different types of cells are marked by fluorescent proteins. Both of the cell types come originally from the blood and can be considered immune cells. However, one kind – marked with green — is in the brain all the time, and the red kind enters the brain only when there is an inflammatory breach of the blood brain barrier.

Both markers, CX3CR1 (green) and CCR2 (red), are chemokine receptors. Green fluorescent protein is selectively produced in microglia, which settle in the brain before birth and are thought to have important housekeeping/maintenance functions.

Monocytes, a distinct type of cell that is not usually in the brain in large numbers, are lit up red. Monocytes rush into the brain in status epilepticus, and in traumatic brain injury, hemorrhagic stroke and West Nile virus encephalitis, to name some other conditions where brain inflammation is also seen.

In the PNAS paper, Varvel and his colleagues include a cautionary note about using these mice for studying situations of more prolonged brain inflammation, such as neurodegenerative diseases: the monocytes may turn down production of the red protein over time, so it’s hard to tell if they’re still in the brain after several days.

Targeting CCR2 – good or bad? Depends on the disease model

The researchers make the case that “inhibiting brain invasion of CCR2+ monocytes could represent a viable method for alleviating several deleterious consequences of status epilepticus.” Read more

Posted on by Quinn Eastman in Immunology, Neuro Leave a comment

Flow mediated dilation

On Friday, researchers from Emory Clinical Cardiovascular Research Institute demonstrated a test for how much blood vessels adjust to changes in blood flow. This test is known as “flow-mediated dilation” or FMD. A blood pressure measurement cuff is tightened on the arm for five minutes, restricting blood flow.

img_0172-copy

ECCRI investigator Salman Sher, MD demonstrates flow-mediated dilation

When the cuff is released, blood flow increases, but how much the arm’s main artery expands depends on the endothelium – the lining of the artery — and its ability to respond to nitric oxide, which is induced by the increased flow. Researchers monitor the artery’s expansion by ultrasound.

ECCRI co-director Arshed Quyyumi and his colleagues at Emory have extensive experience using the FMD test. Impaired endothelial function is an early stage in the process of atherosclerosis.

The FMD test is relatively non-invasive, in that no catheter probe is necessary. However, practitioners need practice and careful study design to ensure accuracy, ECCRI investigator Salman Sher explained. Posture, time of day and whether the patient has eaten can all affect the results.

Lab Land asked Sher (seated in the photo) whether the effect was similar to the common experience of sleeping on an arm and having it turn numb, followed by “pins and needles” when the pressure is relieved. This feeling actually comes from nerve compression. Read more

Posted on by Quinn Eastman in Heart Leave a comment

Nutty stimulant revealed as anticancer tool

Arecoline — the stimulant component of areca nuts — has anticancer properties, researchers at Winship Cancer Institute of Emory University have discovered. The findings were published Thursday, November 17 in Molecular Cell.

areca-nut-and-arecoline

Areca nut and chemical structure of arecoline. From Wikimedia.

Areca nuts are chewed for their stimulant effects in many Asian countries, and evidence links the practice to the development of oral and esophageal cancer. Analogous to nicotine, arecoline was identified as an inhibitor of the enzyme ACAT1, which contributes to the metabolism-distorting Warburg effect in cancer cells.

Observers of health news have complained that coffee, as a widely cited example, is implicated in causing cancer one week and absolved the next. Arecoline is not another instance of the same trend, stresses senior author Jing Chen, PhD, professor of hematology and medical oncology at Emory University School of Medicine and Winship Cancer Institute.

“This is just a proof of principle, showing that ACAT1 is a good anticancer target,” Chen says. “We view arecoline as a lead to other compounds that could be more potent and selective.”

Chen says that arecoline could be compared to arsenic, a form of which is used as a treatment for acute promyelocytic leukemia, but is also linked to several types of cancer. Plus, arecoline’s cancer-promoting effects may be limited if it is not delivered or absorbed orally, he says. When arecoline first arose in a chemical screen, Chen says: “It sounded like a carcinogen to me. But it all depends on the dose and how it is taken into the body.” Read more

Posted on by Quinn Eastman in Cancer Leave a comment

Oxytocin receptor levels predict comforting behavior in prairie voles

Different levels of a receptor for a hormone involved in social bonding may explain individual variation in offering comfort during stressful situations. Like humans, animals console each other in times of distress: monkeys hug and kiss, and prairie voles groom each other.

James Burkett, PhD

James Burkett, PhD

Emory postdoc James Burkett described his research on voles at a press conference on “The Neuroscience of Emotion and Social Behavior” at the Society for Neuroscience meeting in San Diego on Sunday. Here are Video (Burkett’s part is roughly from 4:50 to 9:00) and the scientific abstract.

Burkett’s presentation, on oxytocin-dependent comforting behavior in prairie voles, outlined an extension of his graduate work with Larry Young at Yerkes National Primate Research Center, which was published in Science in January 2016 and impressed oxytocin skeptic Ed Yong. Burkett, now in Gary Miller’s laboratory at Rollins School of Public Health, also masterminded a Reddit “Ask me anything” in February.

The rest of the Society for Neuroscience press release:

Previous research indicates oxytocin—a hormone that promotes social and maternal bonding—acts in the anterior cingulate cortex (ACC) of the prairie vole brain to encourage consoling behavior. In humans, the ACC activates when people see others in pain. Some degree of personal distress motivates comforting behaviors, but too much actually makes animals (including humans, chimpanzees, and rats) less likely to offer comfort.

Read more

Posted on by Quinn Eastman in Neuro Leave a comment

Nerve gas, angel dust and genetic epilepsy

Last week, Lab Land noticed similarities between two independent lines of research from the Escayg and Traynelis/Yuan labs at Emory. Both were published recently and deal with rare forms of genetic epilepsy, in which molecular understanding of the cause leads to individualized treatment, albeit with limited benefit.

Both conditions are linked to an excess of neuronal excitation, and both can be addressed using medications that have also been tested for Alzheimer’s. A critical difference is that memantine is FDA-approved for Alzheimer’s, but huperzine A is not.

What condition? Dravet syndrome/GEFS+ Epilepsy-aphasia syndrome
What gene is mutated? SCN1A – sodium ion channel GRIN2A – NMDA receptor subunit
What is the beneficial drug? Huperzine A Memantine
How does the drug work? Acetylcholinesterase inhibitor NMDA receptor antagonist
Other drugs that use the same mechanism Alzheimer’s medications such as donepezil

Irreversible + stronger: insecticides, nerve gas

Ketamine, phencyclidine (aka PCP)
Posted on by Quinn Eastman in Neuro Leave a comment