In landmark study of cell therapy for heart attack, more cells make a difference

Results from one of the largest studies of bone marrow cell therapy for heart attack in the United States. Researchers made real progress in determining the cell type and dose that can benefit patients.

Cell death drug discovery: come at the king, you best not miss

Researchers tried to chemically inactivate the king of one form of cell death, only to find their tools triggered another form.

Breaking the rules: flagellin vs rotavirus

It’s not chicken soup, the cure for every illness, or duct tape, the fix for every mechanical problem, but flagellin is getting there.

In landmark study of cell therapy for heart attack, more cells make a difference

Patients who receive more cells get significant benefits. That’s a key lesson emerging from a clinical trial that was reported this week at the American Heart Association meeting in Chicago.

In this study, doctors treated heart attack patients with their own bone marrow cells, selected for their healing potential and then reinjected into the heart, in an effort to improve the heart’s recovery. In the PreSERVE-AMI phase II trial, physicians from 60 sites (author list) treated 161 patients, making the study one of the largest to assess cell therapy for heart attacks in the United States. The study was sponsored by NeoStem, Inc.

“This was an enormous undertaking, one that broke new ground in terms of assessing cell therapy rigorously,” says the study’s principal investigator, Arshed Quyyumi, MD, professor of medicine at Emory University School of Medicine and co-director of the Emory Clinical Cardiovascular Research Institute. “We made some real progress in determining the cell type and doses that can benefit patients, in a group for whom the risks of progression to heart failure are high.” Read more

Posted on by Quinn Eastman in Heart Leave a comment

Cell death drug discovery: come at the king, you best not miss

It may seem like a stretch to compare an enzyme to a notorious criminal, especially one as distinctive as Omar Little, a character from the HBO drama The Wire played by Michael Kenneth Williams.

But stick with me, I’ll explain.

TheWire-OmarLittle2-Portable

Omar is a stick-up man who robs street-level drug dealers. When drug dealer henchmen Stinkum and Weebay ambush him, they are unsuccessful and Stinkum is killed. Omar tells Weebay, who is hiding behind a car: “Come at the king, you best not miss.”

At Emory, Ed Mocarski, Bill Kaiser and colleagues at GlaxoSmithKline have been studying an enzyme called RIP3. RIP3 is the king of a form of programmed cell death called necroptosis. RIP3 is involved in killing cells as a result of several inflammation-, infection- or injury-related triggers, so inhibitors of RIP3 could be useful in modulating inflammation in many diseases.

In a new Molecular Cell paper, Mocarski, Kaiser and their co-authors lay out what happened when they examined the effects of several compounds that inhibit RIP3 in cell culture. These compounds stopped necroptosis, but unexpectedly, they unleashed apoptosis, another form of programmed cell death.  Read more

Posted on by Quinn Eastman in Immunology Leave a comment

Breaking the rules: flagellin vs rotavirus

Flagellin is a bacterial protein that activates the innate immune system. Its name comes from flagella, the whips many bacteria use to propel themselves.

On Thursday, a team of researchers led by immunologist Andrew Gewirtz reported in Science that treatment with flagellin can prevent or cure rotavirus infection in animals. Rotavirus infection is one of the most common causes of severe diarrhea and is a major cause of death for children in developing countries.

abc_gewirtz_fecal_transplant_100922_wg

Andrew Gewirtz, PhD

Gewirtz’s lab is now at Georgia State, but he and his colleagues initiated this research while at Emory and several co-authors are affliliated with Emory, including immunologist Ifor Williams.

These findings are remarkable for several reasons. One is: give the immune system something from bacteria, and it’s better at fighting a virus? As Gewirtz says in a GSU news release: “It’s analogous to equipping an NFL defense with baseball bats. Blatant violation of all the rules but yet, at least in this case, very effective.”

For me, what was most surprising about this paper was that treatment with flagellin, or immune signaling proteins activated by flagellin, can get mice with severely impaired immune systems – no T cells or B cells at all — to evict rotavirus. These are mice that have to be reared under special conditions because they are vulnerable to other infections. Interferons, well-known antiviral signaling molecules, are also not involved in resisting or evicting rotavirus infection, the researchers found. Read more

Posted on by Quinn Eastman in Immunology Leave a comment

Paul Offit: rock star of vaccine advocacy

This piece in the Los Angeles Times gives a helpful preview of what Paul Offit’s talk at Emory next week may be like. He also gave a keynote speech at the Association for Health Care Journalists meeting this spring.

Offit is the chief of the Division of Infectious Diseases and the Director of the Vaccine Education Center at the Children’s Hospital of Philadelphia. He is speaking at noon at the Health Sciences Research Building Auditorium on Nov. 18.

Offit is also speaking that morning at Childrens’ Scottish Rite hospital on the 1991 measles outbreak in Philadelphia. The emails I’ve been getting for the noon event ask people to register.

Posted on by Quinn Eastman in Immunology Leave a comment

Ebola’s capriciousness in kids

Anita McElroy, a pediatric infectious disease specialist at Emory, and her colleagues at the CDC, led by Christina Spiropoulou, have been getting some attention for their biomarker research on Ebola virus infection. Sheri Fink from the New York Times highlighted their work in a Nov. 9 report on the infection’s capriciousness. Genetics may also play a role in surviving Ebola infection, as recent animal research has suggested.

McElroy’s team’s findings attracted notice because their results suggest that Ebola virus disease may affect children differently and thus, children may benefit from different treatment regimens than those for adults. The authors write that early intervention to prevent injury to the lining of blood vessels — using statins, possibly — might be a therapeutic strategy in pediatric patients. Read more

Posted on by Quinn Eastman in Immunology Leave a comment

Acidity of aging leads to new Alzheimer’s drug target

Pathologist Keqiang Ye and his colleagues have been studying the functions of an enzyme called AEP, or asparagine endopeptidase, in the brain. AEP is activated by acidic conditions, such as those induced by stroke or seizure.

AEP is a protease. That means it acts as a pair of scissors, snipping pieces off other proteins. In 2008, his laboratory published a paper in Molecular Cell describing how AEP’s acid-activated snipping can unleash other enzymes that break down brain cells’ DNA.

Following a hunch that AEP might be involved in neurodegenerative diseases, Ye’s team has discovered that AEP also acts on tau, which forms neurofibrillary tangles in Alzheimer’s disease.

“We were looking for additional substrates for AEP,” Ye says. “We knew it was activated by acidosis. And we had read in the literature that the aging brain tends to be more acidic, especially in Alzheimer’s.”

The findings, published in Nature Medicine in October, point to AEP as a potential target for drugs that could slow the advance of Alzheimer’s, and may also lead to improved diagnostic tools. Read more

Posted on by Quinn Eastman in Neuro Leave a comment

No junk: long RNA mimics DNA, restrains hormone responses

It arises from what scientists previously described as “junk DNA” or “the dark matter of the genome,” but this gene is definitely not junk. The gene Gas5 acts as a brake on steroid hormone receptors, making it a key player in diseases such as hormone-sensitive prostate and breast cancer.

Unlike many genes scientists are familiar with, Gas5 does not encode a protein. It gets transcribed into RNA, like many other genes, but with Gas5 the RNA is what’s important, not the protein. The RNA accumulates in cells subjected to stress and soaks up steroid hormone receptors, preventing them from binding DNA and turning genes on and off.

Emory researchers have obtained a detailed picture of how the Gas5 RNA interacts with steroid hormone receptors. Their findings show how the Gas5 RNA takes the place of DNA, and give hints as to how it evolved.

The results were published Friday in Nature Communications.

Scientists used to think that much of the genome was “fly-over country”: not encoding any protein and not even accessed much by the cell’s gene-reading machinery. Recent studies have revealed that a large part of the genome is copied into lincRNAs (long intergenic noncoding RNAs), of which Gas5 is an example. Read more

Posted on by Quinn Eastman in Cancer, Immunology Leave a comment

Shout out for SWAE

Loud applause for the members of SWAE. The student group Science Writers at Emory, previously dormant, has relaunched the publication “In Scripto”. We look forward to seeing more from SWAE.

The new Halloween-themed issue of In Scripto is published in “ISSUU”, but I’ve broken it down into a table of contents by author, graduate program and article: Read more

Posted on by Quinn Eastman in Uncategorized Leave a comment

FDA approves treatment for acquired hemophilia

On Oct. 24, the Food and Drug Administration approved Obizur, a treatment for acquired hemophilia A. Obizur was originally developed by a research team led by Emory hematologist Pete Lollar. The Obizur technology was licensed by Emory in 1998 to startup company Octagen (more about Octagen from Philadelphia Business Journal) and eventually brought to commercial availability by the pharmaceutical firm Baxter International.

Lollar is Hemophilia of Georgia Professor of Pediatrics in the Aflac Cancer and Blood Disorders Center at Emory University School of Medicine and Children’s Healthcare of Atlanta. The team that developed the drug included Ernest Parker, John Healey and Rachel Barrow, and followed a research collaboration between Lollar and Emory cardiologist Marschall Runge (now at UNC).

Hemophilia is a group of blood clotting disorders leading to excessive bleeding that can occur spontaneously or following injury or surgery. Hemophilia A is caused by a deficiency of clotting factor VIII, and can be either inherited or acquired.

In acquired hemophilia A, the immune system is somehow provoked into making antibodies against factor VIII that inactivate it. Acquired hemophilia is a challenge for doctors to deal with because patients frequently present with severe, life threatening bleeding and also because it’s a surprise: patients do not have a previous personal or family history of bleeding episodes. Antibodies to factor VIII also can be a problem for approximately 30 percent of patients with inherited hemophilia.

Lollar’s team developed a modified form of factor VIII, derived from the protein sequence of pigs, which is less of a red flag to the immune system. Read more

Posted on by Quinn Eastman in Immunology Leave a comment

Plaque erosion: heart attacks triggered by a whimper, not a bang

Cardiologist Bob Taylor and colleagues have a new paper in PLOS One this week, looking at the biomechanical forces behind plaque erosion.

Plaque erosion is a mechanism for blood clots formation in coronary arteries that is not as well-understood as its more explosive counterpart, plaque rupture. Plaque erosion disproportionally affects women more than men and is thought to account for most heart attacks in younger women (women younger than 50).

“We believe that this work has implications for our better understanding of the underlying biology of coronary artery disease in women,” Taylor says. The first author of the paper is biomedical engineering graduate student Ian Campbell, who now has his PhD. The team collaborated with cardiovascular pathologist Renu Virmani in Maryland.

Cardiologists have well-developed ideas for how plaque rupture works*; see the concept of “vulnerable plaque.” Cholesterol and inflammatory cells build up in the coronary arteries over several years. At one point in a particular artery, the plaque has a core of dying inflammatory cells, covered by a fibrous cap. If the cap is thin (the patterns of blood flows near the cap influence this), there is a risk that the cap will break and the contents of the core will spill out, triggering a blood clot nearby.

Plaque erosion is more mysterious and can occur more gradually, the researchers have found. Read more

Posted on by Quinn Eastman in Heart Leave a comment
1 2 3 4 5 6 7 8 9 10 ... 52 53   Next »
  • Feedback

    Let us know what you think.

    You can contact us via the email button below or you can use our online feedback form You can also leave comments directly on individual posts.