‘Genetic doppelgangers:’ Emory research provides insight into two neurological puzzles

An international team led by Emory scientists has gained insight into the pathological mechanisms behind two devastating neurodegenerative diseases. The scientists compared the most common inherited form of amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD) with a rarer disease called spinocerebellar ataxia type 36 (SCA 36). Both of the diseases are caused by abnormally expanded and strikingly similar DNA repeats. However, ALS progresses quickly, typically killing patients within a year or two, while the disease Read more

Emory launches study on COVID-19 immune responses

Emory University researchers are taking part in a multi-site study across the United States to track the immune responses of people hospitalized with COVID-19 that will help inform how the disease progresses and potentially identify new ways to treat it.  The study is funded by the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health. The study – called Immunophenotyping Assessment in a COVID-19 Cohort (IMPACC) – launched Friday. Read more

Marcus Lab researchers make key cancer discovery

A new discovery by Emory researchers in certain lung cancer patients could help improve patient outcomes before the cancer metastasizes. The researchers in the renowned Marcus Laboratory identified that highly invasive leader cells have a specific cluster of mutations that are also found in non-small cell lung cancer patients. Leader cells play a dominant role in tumor progression, and the researchers discovered that patients with the mutations experienced poorer survival rates. The findings mark the first Read more

Radiologists wrestle with robots – ethically

Radiologists look at and analyze images, tasks computer algorithms can do. This is fertile soil for artificial intelligence (AI) — enough so that some predict that AI will replace radiologists.

John Banja, PhD

Emory bioethicist John Banja says: don’t believe the hype. AI will generate tools radiologists will want to use, he says. But human experts will have plenty to do, including making sure that the algorithms are properly vetted and trained on appropriate data.

“We already know what a lot of the ethical issues are going to be…informed consent, privacy, data protection, ownership, all that kind of stuff,” Banja recently told Health Imaging. “What we need to do is drill down to the next level, especially the practice level.”

Banja has received a grant from the Advanced Radiology Services Foundation to support a series of podcasts with radiologists over the next two years. He will be teaming up with Emory radiologist Rich Duszak, a specialist in health policy, and Norm Beauchamp, medical dean at Michigan State.

Banja and Duszak are still planning podcast sessions and lining up interviews, but they said the first episode will be on “AI hype”, and the second will cover standard of care/medical malpractice, with future issues on FDA standards.

Duszak comments on how radiologists need to take control of the algorithms in this video.

Also, with radiology chair Carolyn Meltzer, Banja recently published a review on ethics related to radiology and AI, exploring issues such as selection bias and stretching algorithms too far. Read more

Posted on by Quinn Eastman in Uncategorized Leave a comment

Opioids: crunching the Tweets

Posts on publicly available social media platforms such as Twitter contain a huge volume of information about the declared activities and transient whims of millions of people. Within this unruly pile of data, there may be clues that could help public health researchers track opioid users and issues affecting them.

Abeed Sarker from Emory’s Department of Biomedical Informatics recently published a paper in JAMA Network Open on his analysis of Twitter posts about opioid use. The paper was featured in Popular Science.

Sarker and colleagues from Penn trained a machine learning algorithm on a subset of posts about opioid use, so that the algorithm could analyze a larger body of tweets. They found that Twitter posts about opioids in Pennsylvania, classified by the algorithm, matched the rates of overdose deaths and rates of opioid use measured through national surveys. Their aim is to be able to spot patterns of overdoses faster than prescription drug monitoring programs.

“The findings suggest that automatic processing of social media data, combined with geospatial and temporal information, may provide close to real-time insights into the status and trajectory of the opioid epidemic,” the authors write.

Read more

Posted on by Quinn Eastman in Neuro Leave a comment

Stage fright: don’t get over it, get used to it

Stage fright: don’t get over it, get used to it, advises Emory neuroscientist Anwesha Banerjee in her recent talk at TEDx Decatur. Many can feel empathy with the situation Banerjee describes. It was her first public presentation eight years ago, facing “a room full of scientists, who for whatever reason, did not look very happy that day.”

“What if I fail in front of the crowd? What if everybody thinks I’m an idiot?”

That feeling of scrutiny might have an evolutionary relationship to the fear of being eaten by a predator, she speculates.

Through participating in Toastmasters International, she has made public speaking more of a habit. She contrasts the two parts of the brain: the amygdala, tuner of emotional responses, with the basal ganglia, director of habits.

“I still get stage fright,” she says. “In fact, I have it right now, thinking how all you predators might try to eat me up! But my brain pays less attention to it.”

Banerjee is a postdoctoral scientist in cell biologist Gary Bassell’s lab, studying myotonic dystrophy. In 2017, she was funded by the Myotonic Dystrophy Foundation to create a mouse model of the neurological/sleep symptoms of myotonic dystrophy.

Posted on by Quinn Eastman in Neuro Leave a comment

Beyond birthmarks and beta blockers, to cancer prevention

Ahead of this week’s Morningside Center conference on repurposing drugs, we wanted to highlight a recent paper in NPJ Precision Oncology by dermatologist Jack Arbiser. It may represent a new chapter in the story of the beta-blocker propranolol.

Infantile hemangioma (stock photo)

Several years ago, doctors in France accidentally discovered that propranolol is effective against hemangiomas: bright red birthmarks made of extra blood vessels, which appear in infancy. Hemangiomas often don’t need treatment and regress naturally, but some can lead to complications because they compromise other organs. Infants receiving propranolol require close monitoring to ensure that they do not suffer from side effects related to propranolol’s beta blocker activity, such as slower heart rate or low blood sugar.

Arbiser’s lab showed that only one of two mirror-image forms of propranolol is active against endothelial or hemangioma cells, but it is the inactive one, as far as being a beta-blocker. Many researchers were already looking at repurposing propranolol based on its anti-cancer properties. The insight could be a way to avoid beta-blocker side effects, even beyond hemangiomas to malignant tumors. Check out the Office of Technology Transfer’s feature on this topic. Read more

Posted on by Quinn Eastman in Cancer Leave a comment

Drying up the HIV reservoir

Immunologists refer to the cells that harbor HIV, even while someone is getting effective antiretroviral drugs, as the “reservoir.” That term inspires a lot of waterway metaphors! Unfortunately, drying up the HIV reservoir is not as straightforward as building a dam across a stream.  But it is the goal, if we are talking about the still-elusive possibility of a HIV cure.

Maud Mavigner, Ann Chahroudi and colleagues at Yerkes recently published a paper in Journal of Virology on targeting the Wnt/beta-catenin pathway as a tactic. They were studying SIV-infected macaques, in the context of ongoing antiretroviral therapy.

The HIV reservoir is more difficult to visualize than a human-made aquatic reservoir

Wnt is one of those funky developmental signaling pathways that gets re-used over and over again, whether it’s in the early embryo,the brain or the intestine. Beta-catenin is a central protein in that pathway.

In this case, Wnt/beta-catenin regulates the balance between self-renewal and differentiation of memory T cells – important components of the HIV reservoir. Mavigner’s team used PRI-724, a molecule that blocks interaction between beta-catenin and another protein it needs to turn on genes. PRI-724 has also been investigated in the context of cancer clinical trials. Read more

Posted on by Quinn Eastman in Immunology Leave a comment

Designer drugs as tools for studying brain development in non-human primates

To investigate the functions of regions within the brain, developmental neuroscience studies have often relied on permanent lesions. As an alternative to permanent lesions, scientists at Yerkes National Primate Research Center sought to test whether chemogenetic techniques could be applied to produce a transient inhibition of the amygdala, well known for regulating emotional responses, in infant non-human primates.

Their findings were recently published online by eNeuro, an open access journal of the Society for Neuroscience.

Amygdala — image from NIMH

Chemogenetics is a way of engineering cells so that they selectively respond to designer drugs, which have minimal effects elsewhere in the brain. It involves injection of a viral vector carrying genes encoding receptors responsive to the designer drug – in this case, clozapine-N-oxide, a metabolite of the antipsychotic clozapine. The technique has mostly been tested in rodents.

“This proof-of-principle study is the first to demonstrate that chemogenetic tools can be used in young infant nonhuman primates to address developmental behavioral neuroscience questions,” says Jessica Raper, PhD, first author of the eNeuro paper and a research associate at Yerkes. “Considering its reversibility and reduced invasiveness, this technique holds promise for developmental studies in which more invasive techniques cannot be employed.” Read more

Posted on by Quinn Eastman in Neuro Leave a comment

Overcoming cardiac pacemaker “source-sink mismatch”

Instead of complication-prone electronic cardiac pacemakers, biomedical engineers at Georgia Tech and Emory envision the creation of “biological pacemakers.” Hee Cheol Cho and colleagues have been taking advantage of his work on a gene called TBX18 that can reprogram heart muscle cells into specialized pacemaker cells.

Graduate student Sandra Grijalva in lab

Every heartbeat originates from a small group of cells in the heart called the sinoatrial node. How these cells drive contractions in the relatively massive, and electrically sturdy, rest of the heart is a problem cardiology researchers call the “source-sink mismatch.” Until Cho’s innovations, it was only possible to isolate a handful of pacemaker cells from animal hearts, and the isolated cells could not be cultured.

Cho and colleagues recently published a paper in Advanced Science describing TBX18-induced pacemaker cell spheroids, a platform for studying source-sink mismatch in culture

Graduate student Sandra Grijalva is the first author of the paper. We first spotted Grijalva’s work when it was presented at the American Heart Association meeting in 2017. Read more

Posted on by Quinn Eastman in Heart Leave a comment

Hope Clinic part of push to optimize HIV vaccine components

Ten years ago, the results of the RV144 trial– conducted in Thailand with the help of the US Army — re-energized the HIV vaccine field, which had been down in the dumps. It was the first vaccine clinical trial to ever demonstrate any efficacy in preventing HIV. The Hope Clinic of Emory Vaccine Center has been involved in efforts to build on the RV144 trial’s promising results. These early-stage studies have been optimizing the best vaccine components and techniques for larger vaccine efficacy trials, some of which are now underway.

Nadine Rouphael, interim director of the Hope Clinic, was first author on a recent paper in Journal of Clinical Investigation, reporting a multi-center study from the HIV Vaccine Trials Network. HVTN is headquartered at the Fred Hutchinson Cancer Research Center in Seattle and supported by the National Institute of Allergy and Infectious Diseases.

“Our study shows that there are tools available to us now to improve on the immunogenicity seen in RV144, which may lead to better efficacy in future field trials,” Rouphael says. (See statement on the HVTN 105 study here.) Read more

Posted on by Quinn Eastman in Immunology Leave a comment

Invasive cancer cells marked by distinctive mutations

What does it take to be a leader – of cancer cells?

Adam Marcus and colleagues at Winship Cancer Institute are back, with an analysis of mutations that drive metastatic behavior among groups of lung cancer cells. The findings were published this week on the cover of Journal of Cell Science, and suggest pharmacological strategies to intervene against or prevent metastasis.

Marcus and former graduate student Jessica Konen previously developed a technique for selectively labeling “leader” or “follower” lung cancer cells in culture, using lasers that turn a fluorescent protein from green to red. The leaders are more adventurous and invasive, but the followers support the leaders and help them survive. Check out our prize-winning video and their 2017 Nature Communications paper.

The magenta cells have leader-specific mutated Arp3 protein, while the green cells are unmodified followers.

The new research harnesses their technique to track the mutations that are specific to leader or follower cells. It was a collaboration with the lab of Paula Vertino, formerly at Winship and now at University of Rochester. Cancer Biology graduate students Elizabeth Zoeller and Brian Pedro led the work, with sophisticated genomics from Ben Barwick.

One of the leader-specific mutations was in Arp3, part of a protein complex that promotes the protrusion of cellular blobs, facilitating migration. The researchers took the mutated Arp3 protein from leader cells and forced its production in follower cells. In the cover image, the magenta cells on the outside are the ones with the mutated Arp3 protein, while the green cells are unmodified. Read more

Posted on by Quinn Eastman in Cancer Leave a comment

Biochemists grab slippery target: LRH-1

To fight fat, scientists had to figure out how to pin down a greasy, slippery target. Researchers at Emory University and Baylor College of Medicine have identified compounds that potently activate LRH-1, a liver protein that regulates the metabolism of fat and sugar. These compounds have potential for treating diabetes, fatty liver disease and inflammatory bowel disease.

Their findings were recently published online in Journal of Medicinal Chemistry.

LRH-1 is thought to sense metabolic state by binding a still-undetermined group of greasy molecules: lipids or phospholipids. It is a nuclear receptor, a type of protein that turns on genes in response to hormones or vitamins. The challenge scientists faced was in designing drugs that fit into the same slot occupied by the lipids.

“Phospholipids are typically big, greasy molecules that are hard to deliver as drugs, since they are quickly taken apart by the digestive system,” says Eric Ortlund, PhD, associate professor of biochemistry at Emory University School of Medicine. “We designed some substitutes that don’t fall apart, and they’re highly effective – 100 times more potent that what’s been found already.”

Previous attempts to design drugs that target LRH-1 ran into trouble because of the grease. Two very similar molecules might bind LRH-1 in opposite orientations. Ortlund’s lab worked with Emory chemist Nathan Jui, PhD and his colleagues to synthesize a large number of compounds, designing a “hook” that kept them in place. Based on previous structural studies, the hook could stop potential drugs from rotating around unpredictably. Read more

Posted on by Quinn Eastman in Uncategorized Leave a comment