Warren symposium follows legacy of geneticist giant

If we want to understand how the brain creates memories, and how genetic disorders distort the brain’s machinery, then the fragile X gene is an ideal place to start. That’s why the Stephen T. Warren Memorial Symposium, taking place November 28-29 at Emory, will be a significant event for those interested in neuroscience and genetics. Stephen T. Warren, 1953-2021 Warren, the founding chair of Emory’s Department of Human Genetics, led an international team that discovered Read more

Mutations in V-ATPase proton pump implicated in epilepsy syndrome

Why and how disrupting V-ATPase function leads to epilepsy, researchers are just starting to figure Read more

Tracing the start of COVID-19 in GA

At a time when COVID-19 appears to be receding in much of Georgia, it’s worth revisiting the start of the pandemic in early 2020. Emory virologist Anne Piantadosi and colleagues have a paper in Viral Evolution on the earliest SARS-CoV-2 genetic sequences detected in Georgia. Analyzing relationships between those virus sequences and samples from other states and countries can give us an idea about where the first COVID-19 infections in Georgia came from. We can draw Read more

Keqiang Ye

The earliest spot for Alzheimer’s blues

The Emory laboratories of Keqiang Ye and David Weinshenker recently published a paper on ApoE, the most common genetic risk factor for late-onset Alzheimer’s. The findings, published in Acta Neuropathologica, suggest how the risk-conferring form of ApoE (ApoE4) may exacerbate pathology in the locus coeruleus.

The LC, part of the brainstem, is thought to be the first region of the brain where pathological signs predicting future cellular degeneration show up. The LC (“blue spot”) gets its name from its blue color; it regulates attention, arousal, stress responses and cognition. The LC is also the major site for production of the neurotransmitter norepinephrine.

ApoE, which packages and transports cholesterol, was known to modulate the buildup of the toxic protein fragment beta-amyloid, but this proposed mechanism goes through Tau. Tau is the other pesky protein in Alzheimer’s, forming neurofibrillary tangles that are the earliest signs of degeneration in the brain. Tau pathology correlates better with dementia and cognitive impairments than beta-amyloid, which several proposed Alzheimer’s therapeutics act on.

The new paper shows that ApoE4 inhibits the enzyme VMAT2, which packages norepinephrine into vesicles. As a result, free/unpackaged norepinephrine lingers in the cytoplasm, and forms a harmful oxidative byproduct that triggers enzymatic degradation of Tau. Thus, norepinephrine may have a “too hot to handle” role in Alzheimer’s – with respect to the LC — somewhat analogous to dopamine in Parkinson’s, which has also been observed to form harmful byproducts. Dopamine and norepinephrine are similar chemically and both are substrates of VMAT2, so this relationship is not a stretch.

Model of how norepinephrine byproduct DOPEGAL triggers locus coeruleus degeneration through Tau

The Emory results make the case for inhibiting the enzyme AEP (asparagine endopeptidase), also known as delta-secretase, as an approach for heading off Alzheimer’s. AEP is the Tau-munching troublemaker, and is activated by the norepinephrine byproduct DOPEGAL

An alternative approach may be to inhibit monoamine oxidase (MAO-A above) enzymes — several old-school antidepressants are available that accomplish this.

At Emory, Ye’s lab has been tracing connections for AEP/delta-secretase in the last few years, and Weinshenker’s group is expert on all things norepinephrine, so the collaboration makes sense.

Delta-secretase’s name positions it in relation to beta- and gamma-secretase, enzymes for processing APP (amyloid precursor protein) into beta-amyloid, but AEP/delta-secretase has the distinction of having its fingers in both the beta-amyloid and Tau pies.

We have to caution that most of the recent research on delta-secretase has been in mouse models. Ye’s collaborators in China have been testing an inhibitor of delta-secretase in animals but it has not reached human studies yet, he reports. That said, this work has been oriented toward figuring out the web of interactions between known players such as ApoE and Tau, whose importance has been well-established in studies of humans with Alzheimer’s.

Posted on by Quinn Eastman in Neuro Leave a comment

Tug of war between Parkinson’s protein and growth factors

Alpha-synuclein, a sticky and sometimes toxic protein involved in Parkinson’s disease (PD), blocks signals from an important brain growth factor, researchers have discovered.

The results were published this week in PNAS.

The finding adds to evidence that alpha-synuclein is a pivot for damage to brain cells in PD, and helps to explain why brain cells that produce the neurotransmitter dopamine are more vulnerable to degeneration.

Alpha-synuclein is a major component of Lewy bodies, the protein clumps that are a pathological sign of PD. Also, duplications of or mutations in the gene encoding alpha-synuclein drive some rare familial cases.

In the current paper, researchers led by Keqiang Ye, PhD demonstrated that alpha-synuclein binds and interferes with TrkB, the receptor for BDNF (brain derived neurotrophic factor). BDNF promotes brain cells’ survival and was known to be deficient in Parkinson’s patients. When applied to neurons, BDNF in turn sends alpha-synuclein away from TrkB.  [Ye’s team has extensively studied the pharmacology of 7,8-dihydroxyflavone, a TrkB agonist.]

A “tug of war” situation thus exists between alpha-synuclein and BDNF, struggling for dominance over TrkB. In cultured neurons and in mice, alpha-synuclein inhibits BDNF’s ability to protect brain cells from neurotoxins that mimic PD-related damage, Ye’s team found. Read more

Posted on by Quinn Eastman in Neuro 1 Comment

Drug discovery: Alzheimer’s and Parkinson’s spurred by same enzyme

Alzheimer’s disease and Parkinson’s disease are not the same. They affect different regions of the brain and have distinct genetic and environmental risk factors.

But at the biochemical level, these two neurodegenerative diseases start to look similar. That’s how Emory scientists led by Keqiang Ye, PhD, landed on a potential drug target for Parkinson’s.

Keqiang Ye, PhD

In both Alzheimer’s (AD) and Parkinson’s (PD), a sticky and sometimes toxic protein forms clumps in brain cells. In AD, the troublemaker inside cells is called tau, making up neurofibrillary tangles. In PD, the sticky protein is alpha-synuclein, forming Lewy bodies. Here is a thorough review of alpha-synuclein’s role in Parkinson’s disease.

Ye and his colleagues had previously identified an enzyme (asparagine endopeptidase or AEP) that trims tau in a way that makes it both more sticky and more toxic. In addition, they have found that AEP similarly processes beta-amyloid, another bad actor in Alzheimer’s, and drugs that inhibit AEP have beneficial effects in Alzheimer’s animal models.

In a new Nature Structural and Molecular Biology paper, Emory researchers show that AEP acts in the same way toward alpha-synuclein as it does toward tau.

“In Parkinson’s, alpha-synuclein behaves much like Tau in Alzheimer’s,” Ye says. “We reasoned that if AEP cuts Tau, it’s very likely that it will cut alpha-synuclein too.”

A particular chunk of alpha-synuclein produced by AEP’s scissors can be found in samples of brain tissue from patients with PD, but not in control samples, Ye’s team found.

In control brain samples AEP was confined to lysosomes, parts of the cell with a garbage disposal function. But in PD samples, AEP was leaking out of the lysosomes to the rest of the cell.

The researchers also observed that the chunk of alpha-synuclein generated by AEP is more likely to aggregate into clumps than the full length protein, and is more toxic when introduced into cells or mouse brains. In addition, alpha-synuclein mutated so that AEP can’t cut it is less toxic. Read more

Posted on by Quinn Eastman in Neuro Leave a comment

Amyloid vs tau? With this AD target, no need to choose

Keqiang Ye’s lab at Emory recently published a paper in Nature Communications that offers a two for one deal in Alzheimer’s drug discovery.

Periodically we hear suggestions that the amyloid hypothesis, the basis of much research on Alzheimer’s disease, is in trouble. Beta-amyloid is a toxic protein fragment that accumulates in extracellular brain plaques in Alzheimer’s, and genetics for early-onset Alzheimer’s point to a driver role for amyloid too.

In mice, inhibiting AEP hits two targets (amyloid and tau) with one shot

Unfortunately, anti-amyloid agents (either antibodies that sop up beta-amyloid or drugs that steer the body toward making less of it) have not shown clear positive effects in clinical trials.

That may be because the clinical trials started too late or the drugs weren’t dosed/delivered right, but there is a third possibility: modifying amyloid by itself is not enough.

Ye’s lab has been investigating an enzyme called AEP (asparagine endopeptidase), which he provocatively calls “delta secretase.” AEP is involved in processing both amyloid and tau, amyloid’s intracellular tangle-forming counterpart. Read more

Posted on by Quinn Eastman in Neuro Leave a comment

Parkinson’s disease: hold the AMPs

Pathologist Keqiang Ye and colleagues recently published a paper in PNAS that may have implications for Parkinson’s disease pathology and treatment strategies.

The protein alpha-synuclein is a bad actor in PD (nice explainer from Michael J. Fox Foundation); it’s a major constituent of Lewy bodies, the protein clumps that appear in PD patients’ brains, and there is a genetic link too. Alpha-synuclein seems to bring other proteins into the clumps, which may disrupt neuron function.

In particular, it sequesters PIKE-L, an inhibitor of AMP kinase, leading to AMP kinase hyperactivation and cell death. AMP kinase is a metabolic regulator activated by metformin, a common treatment for diabetes. So activating AMP kinase in some situations can be good for your body; however for the neurons affected by alpha-synuclein, activating it too much is bad.

Posted on by Quinn Eastman in Neuro Leave a comment

The secrets of a new Alzheimer’s secretase

The title of Keqiang Ye’s recent Nature Communications paper contains a provocative name for an enzyme: delta-secretase.

Just from its name, one can tell that a secretase is involved in secreting something. In this case, that something is beta-amyloid, the toxic protein fragment that tends to accumulate in the brains of people with Alzheimer’s disease.

Aficionados of Alzheimer’s research may be familiar with other secretases. Gamma-secretase was the target of some once-promising drugs that failed in clinical trials, partly because they also inhibit Notch signaling, important for development and differentiation in several tissues. Now beta-secretase inhibitors are entering Alzheimer’s clinical trials, with similar concerns about side effects.

Many Alzheimer’s researchers have studied gamma- and beta-secretases, but a review of the literature reveals that so far, only Ye and his colleagues have used the term delta-secretase.

This enzyme previously was called AEP, for asparagine endopeptidase. AEP appears to increase activity in the brain with aging and cleaves APP (amyloid precursor protein) in a way that makes it easier for the real bad guy, beta-secretase, to produce bad beta-amyloid.*At Alzforum, Jessica Shugart describes the enzyme this way:

Like a doting mother, AEP cuts APP into bite-sized portions for toddler BACE1 [beta-secretase] to chew on, facilitating an increase in beta-amyloid production. Read more

Posted on by Quinn Eastman in Neuro Leave a comment

Are TrkB agonists ready for translation into the clinic?

Our recent news item on Emory pathologist Keqiang Ye’s obesity-related research (Molecule from trees helps female mice only resist weight gain) understates how many disease models the proto-drug he and his colleagues have discovered, 7,8-dihydroxyflavone, can be beneficial in. We do mention that Ye’s partners in Australia and Shanghai are applying to begin phase I clinical trials with a close relative of 7,8-dihydroxyflavone in neurodegenerative diseases.

Ye’s 2010 PNAS paper covered models of Parkinson’s, stroke and seizure. Later publications take on animal models of depression, Alzheimer’s, fear learning, hearing loss and peripheral nerve injury. Although those findings begin to sound too good to be true, outside laboratories have been confirming the results (not 100 percent positive, but nothing’s perfect).  Plenty of drugs don’t make it from animal models into the clinic, but this is a solid body of work so far.

 

 

 

Posted on by Quinn Eastman in Neuro Leave a comment

Acidity of aging leads to new Alzheimer’s drug target

Pathologist Keqiang Ye and his colleagues have been studying the functions of an enzyme called AEP, or asparagine endopeptidase, in the brain. AEP is activated by acidic conditions, such as those induced by stroke or seizure.

AEP is a protease. That means it acts as a pair of scissors, snipping pieces off other proteins. In 2008, his laboratory published a paper in Molecular Cell describing how AEP’s acid-activated snipping can unleash other enzymes that break down brain cells’ DNA.

Following a hunch that AEP might be involved in neurodegenerative diseases, Ye’s team has discovered that AEP also acts on tau, which forms neurofibrillary tangles in Alzheimer’s disease.

“We were looking for additional substrates for AEP,” Ye says. “We knew it was activated by acidosis. And we had read in the literature that the aging brain tends to be more acidic, especially in Alzheimer’s.”

The findings, published in Nature Medicine in October, point to AEP as a potential target for drugs that could slow the advance of Alzheimer’s, and may also lead to improved diagnostic tools. Read more

Posted on by Quinn Eastman in Neuro Leave a comment

Hunting for potential diabetes drugs

Pathologist Keqiang Ye and his colleagues have been prolific in finding small molecules able to mimic the action of the brain growth factor BDNF. Aiming to export that success to similar molecules (that is, other receptor tyrosine kinases), they have been searching for potential drugs able to substitute for insulin.

Diabetes drugs Januvia (sitagliptin) and Lantus (insulin analog) are top 20 drugs, both in terms of dollars and monthly prescriptions, and the inconvenience of insulin injection is well known, so the business potential is clear.

A paper published in the journal Diabetes in April describes Ye’s team’s identification of a compound called chaetochromin A, which was originally isolated by Japanese researchers studying toxins found in moldy rice. Chaetochromin A can drive down blood sugar in normal, type 1 diabetes and type 2 diabetes mouse models, the authors show.

See here for another compound identified in Ye’s lab with similar properties.

Read more

Posted on by Quinn Eastman in Uncategorized Leave a comment

Growth factor mimics promote recovery after nerve injury

Peripheral nerve injury ranges from chronic irritation like carpal tunnel syndrome to violent trauma. Severe nerve injury can leave patients with lifelong disabilities. Even if nerves regenerate, functional recovery is often poor, because of problems with regeneration of axons, the signal-carrying “stalks” of nerve cells.Figure4.axons

Cell biologist Art English and his colleagues have shown that compounds identified by pathologist Keqiang Ye can promote axon regeneration when mice have injured peripheral nerves. The growth Cheap NFL Jerseys factor-mimicking compounds not only stimulate axons to regenerate twice as quickly (see figure), but also promote the restoration of connections between nerve and muscle. The results were published in September in PNAS.

Ye previously identified compounds that activate the same signals as the neuron growth factor BDNF (brain-derived neurotrophic factor). These compounds – 7,8-dihydroxyflavone and deoxygedunin — have shown promise in experimental models of diseases such as stroke and Parkinson’s disease. They also have been used to tweak learning and memory in animal models.

Posted on by Quinn Eastman in Neuro Leave a comment