Skin disease studies go deep: depression/inflammation insight

A recent paper from Miller and psychiatry chair Mark Rapaport looks at clinical trials testing an anti-inflammatory drug against psoriasis, to see whether participants’ depressive symptoms improved. Read more

New insight into how brain cells die in Alzheimer's and FTD

(Epi)genetic hallucinations induced by loss of LSD1 resemble Alzheimer's. Another surprise: LSD1 aggregates in Alzheimer's brain, looking like Tau Read more

2B4: potential immune target for sepsis survival

Emory immunologists have identified a potential target for treatments aimed at reducing mortality in sepsis, an often deadly reaction to Read more

Nick Seyfried

Emory neuro-researchers in Alzforum

Just a shoutout regarding Emory folks in Alzforum, the research news site focusing on Alzheimer’s and other neurodegenerative disorders.

Alzforum recently highlighted proteomics wizard Nick Seyfried’s presentation at a June meeting in Germany (Alzheimer’s Proteomics Treasure Trove). This includes work from the Emory ADRC and Baltimore Longitudinal Study of Aging that was published in Cell Systems in December: the first large-scale systems biology analysis of post-mortem brain proteins in Alzheimer’s. The idea is to have a fresh “unbiased” look at proteins involved in Alzheimer’s.

Also, neuroscientists Malu Tansey and Tom Kukar have been teaming up to provide detailed comments on papers being reported in Alzforum. Here’s one on inflammation related to gene alterations in frontotemporal dementia, and another on auto-immune responses in Parkinson’s.

Posted on by Quinn Eastman in Neuro Leave a comment

Proteomics making fantastic routine

Much of basic biomedical research concerns proteins. The enzymes that keep cells running, the regulators and receptors that control what our cells do, the antibodies that defend us against invaders — all of these are proteins.

That means every day, scientists are asking questions like:

What’s happening to my favorite protein? Is there more or less of it in this sample? What other proteins work with it or stick to it?

That’s where a proteomics core facility comes in. Given a mixture of hundreds or even thousands of proteins, proteomics specialists can separate, identify and quantify them.Proteomics1smaller

Researchers in the areas of Alzheimer’s disease, cancer metabolism, schizophrenia and vaccines all make use of Emory’s proteomics core facility. It was key to the Alzheimer’s Disease Research Center’s 2013 discovery of a new form of Alzheimer’s disease protein pathology.

Director Nick Seyfried reports that the core has acquired close to $3 million in sophisticated mass spectrometry equipment in the last few years. The Emory Integrated Proteomics Core, one of the Emory Integrated Core Facilities, is supported in part by the Winship Cancer Institute, the Atlanta Clinical and Translational Science Institute, and a recently renewed grant for ENNCF (Emory Neurosciences NINDS Core Facilities).

Protein mass spectrometry is like Wonkavision

There’s a scene in both the 1971 and 2005 film adaptations of Roald Dahl’s Charlie and the Chocolate Factory, in which a chocolate bar is separated into millions of tiny pieces and sent flying across a clean room. Protein mass spectrometry resembles the first part of this process. Read more

Posted on by Quinn Eastman in Neuro Leave a comment

The secrets of a new Alzheimer’s secretase

The title of Keqiang Ye’s recent Nature Communications paper contains a provocative name for an enzyme: delta-secretase.

Just from its name, one can tell that a secretase is involved in secreting something. In this case, that something is beta-amyloid, the toxic protein fragment that tends to accumulate in the brains of people with Alzheimer’s disease.

Aficionados of Alzheimer’s research may be familiar with other secretases. Gamma-secretase was the target of some once-promising drugs that failed in clinical trials, partly because they also inhibit Notch signaling, important for development and differentiation in several tissues. Now beta-secretase inhibitors are entering Alzheimer’s clinical trials, with similar concerns about side effects.

Many Alzheimer’s researchers have studied gamma- and beta-secretases, but a review of the literature reveals that so far, only Ye and his colleagues have used the term delta-secretase.

This enzyme previously was called AEP, for asparagine endopeptidase. AEP appears to increase activity in the brain with aging and cleaves APP (amyloid precursor protein) in a way that makes it easier for the real bad guy, beta-secretase, to produce bad beta-amyloid.*At Alzforum, Jessica Shugart describes the enzyme this way:

Like a doting mother, AEP cuts APP into bite-sized portions for toddler BACE1 [beta-secretase] to chew on, facilitating an increase in beta-amyloid production. Read more

Posted on by Quinn Eastman in Neuro Leave a comment