Warren symposium follows legacy of geneticist giant

If we want to understand how the brain creates memories, and how genetic disorders distort the brain’s machinery, then the fragile X gene is an ideal place to start. That’s why the Stephen T. Warren Memorial Symposium, taking place November 28-29 at Emory, will be a significant event for those interested in neuroscience and genetics. Stephen T. Warren, 1953-2021 Warren, the founding chair of Emory’s Department of Human Genetics, led an international team that discovered Read more

Mutations in V-ATPase proton pump implicated in epilepsy syndrome

Why and how disrupting V-ATPase function leads to epilepsy, researchers are just starting to figure Read more

Tracing the start of COVID-19 in GA

At a time when COVID-19 appears to be receding in much of Georgia, it’s worth revisiting the start of the pandemic in early 2020. Emory virologist Anne Piantadosi and colleagues have a paper in Viral Evolution on the earliest SARS-CoV-2 genetic sequences detected in Georgia. Analyzing relationships between those virus sequences and samples from other states and countries can give us an idea about where the first COVID-19 infections in Georgia came from. We can draw Read more

amino acids

Football metabolomics

Following on the recent announcement of the Atlanta Hawks training center, here’s a Nov. 2015 research paper from Emory’s sports cardiologist Jonathan Kim, published in Annals of Sports Medicine and Research.

Jonathan Kim, MD

Kim and colleagues from Emory Clinical Cardiovascular Research Institute studied blood samples from 15 freshman football players at Georgia Tech before and after their first competitive season. The researchers had the help of metabolomics expert Dean Jones. Kim has also previously studied blood pressure risk factors in college football players.

On average, football players’ resting heart rate went down significantly (72 to 61 beats per minute), but there were no significant changes in body mass index or blood pressure. The research team observed changes in players’ amino acid metabolism, which they attribute to muscle buildup.

This finding may seem obvious, but imagine what a larger, more detailed analysis could do: start to replace locker room myths and marketing aimed at bodybuilders with science. This was a small, preliminary study, and the authors note they were not able to assess diet or nutritional supplementation. Read more

Posted on by Quinn Eastman in Heart Leave a comment

Starvation signals control intestinal inflammation in mice

Intestinal inflammation in mice can be dampened by giving them a diet restricted in amino acids, the building blocks of proteins, researchers have found. The results were published online by Nature on Wednesday, March 16.

The findings highlight an ancient connection between nutrient availability and control of inflammation. They also suggest that a low protein diet — or drugs that mimic its effects on immune cells — could be tools for the treatment of inflammatory bowel diseases, such as Crohn’s disease or ulcerative colitis.

The research team, led by Emory Vaccine Center immunologist Bali Pulendran, discovered that mice lacking the amino acid sensor GCN2 are more sensitive to the chemical irritant DSS (dextran sodium sulfate), often used to model colitis in animals. This line of research grew out of the discovery by Pulendran and colleagues that GCN2 is pivotal for induction of immunity to the yellow fever vaccine.

“It is well known that the immune system can detect and respond to pathogens, but these results highlight its capacity to sense and adapt to environmental changes, such as nutritional starvation, which cause cellular stress,” he says.

Read more

Posted on by Quinn Eastman in Immunology Leave a comment