2B4: potential immune target for sepsis survival

Emory immunologists have identified a potential target for treatments aimed at reducing mortality in sepsis, an often deadly reaction to Read more

EHR data superior for studying sepsis

Analysis of EHR data says sepsis rates and mortality have been holding steady, contrary to what is suggested by after-the-fact Read more

New pediatric digestive/liver disease gene identified by international team

A multinational team of researchers describes a newly identified cause of congenital diarrhea and liver disease in Read more

Bali Pulendran

Starvation signals control intestinal inflammation in mice

Intestinal inflammation in mice can be dampened by giving them a diet restricted in amino acids, the building blocks of proteins, researchers have found. The results were published online by Nature on Wednesday, March 16.

The findings highlight an ancient connection between nutrient availability and control of inflammation. They also suggest that a low protein diet — or drugs that mimic its effects on immune cells — could be tools for the treatment of inflammatory bowel diseases, such as Crohn’s disease or ulcerative colitis.

The research team, led by Emory Vaccine Center immunologist Bali Pulendran, discovered that mice lacking the amino acid sensor GCN2 are more sensitive to the chemical irritant DSS (dextran sodium sulfate), often used to model colitis in animals. This line of research grew out of the discovery by Pulendran and colleagues that GCN2 is pivotal for induction of immunity to the yellow fever vaccine.

“It is well known that the immune system can detect and respond to pathogens, but these results highlight its capacity to sense and adapt to environmental changes, such as nutritional starvation, which cause cellular stress,” he says.

Read more

Posted on by Quinn Eastman in Immunology Leave a comment

‘Mountain of data’ on flu vaccine responses

Bali Pulendran’s lab at Emory Vaccine Center teamed up with UCSD researchers and recently published a huge analysis of immune responses after seasonal flu vaccination (Immunity is making it available free this week, no subscription needed). Hundreds of volunteers at the Vaccine Center’s Hope Clinic took part in this study.

Note — this study looked at antibody responses to flu vaccines, but didn’t assess protection: whether study participants actually became sick with flu or not.

Our write-up is here. Immunity’s preview, from the Karolinska Institute’s Petter Brodin, is here, Cell Press’s press release is here.

Three points we wanted to call attention to:

*Long-lasting antibodies A surprising finding was how the “molecular signatures” that predict the strength of the immune response a few weeks after vaccination did not predict how long anti-flu antibodies stayed around. Instead, a separate set of signatures predicted the durability of antibody levels.

These distinct signatures may be connected with how plasma cells, responsible for antibody production, need to find homes in the bone marrow. That sounds like the process highlighted by Eun-Hyung Lee and colleagues in an Immunity paper published in July. In bone marrow samples from middle-aged volunteers, her team had found antibody-secreting cells that survive from childhood infections.

*Interfering (?) activation of NK cells/monocytes in elderly While the researchers found people older than 65 tended to have weaker antibody responses to vaccination, there were common elements of molecular signatures that predicted strong antibody responses in younger and older volunteers. However, elderly volunteers tended to have stronger signatures from immune cells that are not directly involved in producing antibodies (monocytes and ‘natural killer’ cells), both at baseline and after vaccination.

From the discussion: “This indicates a potential connection between the baseline state of the immune system in the elderly and reduced responsiveness to vaccination.” Additional comments on this from Shane Crotty in Brad Fikes’ article for the Union Tribune.

*The mountain of data from this and similar studies is available for use by other researchers on the web site ImmPort.

Posted on by Quinn Eastman in Immunology Leave a comment

Six beautiful images — choose your favorites

WoodruffMatthew1

Matthew Woodruff — Bali Pulendran lab

ImageJ=1.48g unit=micron

Kenneth Myers — James Zheng lab

Joshua_Strauss_OPE_Image

Joshua Strauss — Elizabeth Wright lab

AndersonJoAnna

JoAnna Anderson — Francisco Alvarez lab

AlexTamas

Alexey Tamas — Charles Searles lab

Emory’s Office of Postdoctoral Education is holding a Best Image contest. The deadline to vote is this Thursday, April 30. You can look at these beautiful images (and guess exactly what they are, based on what lab they come from), but to VOTE, you need to go to the OPE site.

This is part of the run up to their Postdoctoral Research Symposium at the end of May.

(Hat tip to Ashley Freeman in Dept of Medicine!)

Read more

Posted on by Quinn Eastman in Uncategorized Leave a comment

Two heavy hitters in this week’s Nature

Two feature articles in Nature this week on work by Emory scientists.

One is from Virginia Hughes (Phenomena/SFARI/MATTER), delving into Kerry Ressler’s and Brian Dias’ surprising discovery in mice that sensitivity to a smell can be inherited, apparently epigenetically. Coincidentally, Ressler will be giving next week’s Dean’s Distinguished Faculty lecture (March 12, 5:30 pm at the School of Medicine).

Another is from Seattle global health writer Tom Paulson, on immunologist Bali Pulendran and using systems biology to unlock new insights into vaccine design.

Posted on by Quinn Eastman in Immunology, Neuro Leave a comment

When your immune system calls the shots

Bali Pulendran, PhD

A tiny invader, perhaps a virus or a microbe, enters the body, and our ancient immune system responds. But how does it know what kind of invader has landed? And once it knows, how does it decide what kind of immune response it should launch?

In humans, the immune system consists of two parallel systems working with one another to fend off invaders. One is the innate immune system, the other the adaptive immune system.

Immunologist Bali Pulendran studies how those two systems work together to identify and respond to all kinds of intruders including pathogens, viruses and microbes.

It’s the innate immune system’s job to recognize the first signs of infection—that is, the moment a pathogen enters the body. “In a sense they act as smoke detectors if you will,” says Pulendran. “Little alarms.”

Read more

Posted on by Robin Tricoles in Immunology Leave a comment