‘Genetic doppelgangers:’ Emory research provides insight into two neurological puzzles

An international team led by Emory scientists has gained insight into the pathological mechanisms behind two devastating neurodegenerative diseases. The scientists compared the most common inherited form of amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD) with a rarer disease called spinocerebellar ataxia type 36 (SCA 36). Both of the diseases are caused by abnormally expanded and strikingly similar DNA repeats. However, ALS progresses quickly, typically killing patients within a year or two, while the disease Read more

Emory launches study on COVID-19 immune responses

Emory University researchers are taking part in a multi-site study across the United States to track the immune responses of people hospitalized with COVID-19 that will help inform how the disease progresses and potentially identify new ways to treat it.  The study is funded by the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health. The study – called Immunophenotyping Assessment in a COVID-19 Cohort (IMPACC) – launched Friday. Read more

Marcus Lab researchers make key cancer discovery

A new discovery by Emory researchers in certain lung cancer patients could help improve patient outcomes before the cancer metastasizes. The researchers in the renowned Marcus Laboratory identified that highly invasive leader cells have a specific cluster of mutations that are also found in non-small cell lung cancer patients. Leader cells play a dominant role in tumor progression, and the researchers discovered that patients with the mutations experienced poorer survival rates. The findings mark the first Read more

oxidative phosphorylation

Antibody production: an endurance sport

Antibodies defend us against infections, so they often get described as weapons. And the cells that produce them could be weapon factories?. To understand recent research from immunologist Jerry Boss’s lab, a more appropriate metaphor is the distinction between sprinting and long-distance running.

Graduate student Madeline Price in Boss’s lab has been investigating how antibody-producing cells use glucose – the simple sugar– and how the cells’ patterns of gene activity reflect that usage. Cells can use glycolysis, which is inefficient but fast, analogous to sprinting, or oxidative phosphorylation, generating much more energy overall, more like long distance running.

As Boss and Price point out:

Immunology + Molecular Pathogenesis graduate student Madeline Price

Glycolytic metabolism produces 2 molecules of ATP per molecule of glucose, while oxidative phosphorylation produces 36 molecules of ATP from the same starting glucose molecule. Where oxidative phosphorylation generates more energy from ATP, glycolysis generates metabolic intermediates that are also useful for rapid cellular proliferation.

In their recent paper in Cell Reports, they lay out what happens to B cells, which can go on to become antibody secreting cells (ASCs), after an initial encounter with bacteria. The B cells first proliferate and upregulate both glycolysis and oxidative phosphorylation. However, upon differentiating, the cells shift their preference to oxidative phosphorylation. Read more

Posted on by Quinn Eastman in Immunology Leave a comment