Engineered “stealth bomber” virus could be new weapon against metastatic cancer

Researchers at Emory and Case Western Reserve have re-engineered a cancer-killing virus, so that it is not easily caught by parts of the immune system. Read more

Another side to cancer immunotherapy? Emory scientists investigate intratumoral B cells

B cells represent the other major arm of the adaptive immune system, besides T cells, and could offer opportunities for new treatments against some kinds of Read more

Don’t go slippery on me, tRNA

RNA can both carry genetic information and catalyze chemical reactions, but it’s too wobbly to accurately read the genetic code by itself. Enzymatic modifications of transfer RNAs – the adaptors that implement the genetic code by connecting messenger RNA to protein – are important to stiffen and constrain their interactions. Biochemist Christine Dunham’s lab has a recent paper in eLife showing a modification on a proline tRNA prevents the tRNA and mRNA from slipping out Read more

Wallace H. Coulter Department of Biomedical Engineering

Improve old antibiotics rather than discover new ones, BME researchers propose

The resistance of bacteria to antibiotics is a global challenge that has been exacerbated by the financial burdens of bringing new antibiotics to market and an increase in serious bacterial infections as a result of the COVID-19 pandemic.

Biomedical engineering researchers at Georgia Tech and Emory are tackling the problem of antibiotic resistance not by creating new drugs, but by enhancing the safety and potency of ones that already exist.

Aminoglycosides are antibiotics used to treat serious infections caused by pathogenic bacteria like E. coli or Klebsiella.  Bacteria haven’t developed widespread resistance to aminoglycosides, as compared to other types of antibiotics.  These antibiotics are used sparingly by doctors, in part because of the toxic side effects they can sometimes cause.

In research published in the journal PLOS One, Christopher Rosenberg, Xin Fang and senior author Kyle Allison demonstrated that lower doses of aminoglycosides could be used to treat bacteria when combined with specific metabolic sugars.  Low concentrations of antibiotics alone often cannot eliminate dormant, non-dividing bacterial cells, but the researchers hypothesized based on a past study that combining aminoglycosides with metabolites such as glucose, a simple sugar, or mannitol, a sugar alcohol often used as sweetener, could stimulate antibiotic uptake.

The authors tested these treatment combinations against Gram-negative pathogens E. coli, Salmonella and Klebsiella. The results showed that aminoglycoside-metabolite treatment significantly reduced the concentration of antibiotic needed to kill those pathogens. The authors also demonstrated that this treatment combination did not increase bacterial resistance to aminoglycosides and was effective in treating antibiotic-tolerant biofilms, which are bacterial communities that act as reservoirs of infection.

Read more

Posted on by Quinn Eastman in Uncategorized 1 Comment

Delayed mechanical strain promotes angiogenesis in bone/wound healing

The natural processes of wound or bone healing rely on the growth of new blood vessels, or angiogenesis. If someone breaks a bone, it is standard practice to apply a cast and immobilize the broken bone, so that healing can proceed without mechanical distortion. 

After those initial stages of healing, applying surprising amounts of pressure can encourage angiogenesis, according to a new paper in Science Advances from biomedical engineer Nick Willett’s lab.

“These data have implications directly on bone healing and more broadly on wound healing,” Willett says. “In bone healing or grafting scenarios, physicians are often quite conservative in how quickly patients begin to load the repair site.”

Willett’s lab is part of both Emory’s Department of Orthopedics and the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory, and is based at the Atlanta Veterans Affairs Medical Center.

Read more

Posted on by Quinn Eastman in Uncategorized Leave a comment

Overcoming cardiac pacemaker “source-sink mismatch”

Instead of complication-prone electronic cardiac pacemakers, biomedical engineers at Georgia Tech and Emory envision the creation of “biological pacemakers.” Hee Cheol Cho and colleagues have been taking advantage of his work on a gene called TBX18 that can reprogram heart muscle cells into specialized pacemaker cells.

Graduate student Sandra Grijalva in lab

Every heartbeat originates from a small group of cells in the heart called the sinoatrial node. How these cells drive contractions in the relatively massive, and electrically sturdy, rest of the heart is a problem cardiology researchers call the “source-sink mismatch.” Until Cho’s innovations, it was only possible to isolate a handful of pacemaker cells from animal hearts, and the isolated cells could not be cultured.

Cho and colleagues recently published a paper in Advanced Science describing TBX18-induced pacemaker cell spheroids, a platform for studying source-sink mismatch in culture

Graduate student Sandra Grijalva is the first author of the paper. We first spotted Grijalva’s work when it was presented at the American Heart Association meeting in 2017. Read more

Posted on by Quinn Eastman in Heart Leave a comment

A new term in biophysics: force/time = “yank”

Biologists and biomedical engineers are proposing to define the term “yank” for changes in force over time, something that our muscles cause and nerves can sense and respond to. Their ideas were published on September 12 in Journal of Experimental Biology.

Expressed mathematically, acceleration is the derivative of speed or velocity with respect to time. The term for the time derivative of acceleration is “jerk,” and additional time derivatives after jerk are called “snap,” “crackle” and “pop.”

The corresponding term for force – in physics, force is measured in units of mass times acceleration – has never been defined, the researchers say.

Scientists that study sports often use the term “rate of force development”, a measure of explosive strength. Scientists who study gait and balance — in animals and humans — also often analyze how quickly forces on the body change. It could be useful in understanding spasticity, a common neuromuscular reflex impairment in multiple sclerosis, spinal cord injury, stroke and cerebral palsy.

“Understanding how reflexes and sensory signals from the muscles are affected by neurological disorders is how we ended up needing to define the rate change in force,” says Lena Ting, PhD, professor of rehabilitation medicine at Emory University School of Medicine and the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory. Read more

Posted on by Quinn Eastman in Neuro Leave a comment

Repurposing a transplant drug for bone growth

The transplant immunosuppressant drug FK506, also known as tacrolimus or Prograf, can stimulate bone formation in both cell culture and animal models. This info comes from orthopedics researcher Nick Willett, PhD and colleagues, published in International Journal of Molecular Sciences (open access).

Nick Willett, PhD

The results suggest that FK506 might be repurposed as a “stand-alone” replacement for recombinant BMP-2 (bone morphogenic protein 2). That product has been a huge commercial success for Medtronic, in the context of spinal fusion surgeries, although controversial because of cost and side effects.

BMP-2 is more potent gram for gram, but FK506 still may offer some opportunities in local delivery. From Sangadala et al (2019)

One of Willett’s co-authors is orthopedics chair Scott Boden, MD, whose lab previously developed a system to search for drugs that could enhance BMP-2. Previously, other researchers had observed that FK506 can enhance the action of BMP-2 – this makes sense because FK506’s target protein is a regulator of the BMP pathway. Willett’s team used FK506 on its own, delivered in a collagen sponge.

“That is the big finding here, that it has the potential to be used on its own without any BMP-2,” he says.

The sponge is a possible mechanism for getting the drug to tissues without having too many systemic effects. Willett’s lab is now working on refining delivery, dosing and toxicity, he says.

Willett, based at the Atlanta VA Medical Center, is in the Department of Orthopedics and the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory. He and Sree Sangadala, PhD (first author of the IJMS paper) currently have a grant from National Center for Advancing Translational Sciences on this project.

 

 

Posted on by Quinn Eastman in Immunology Leave a comment

Mapping shear stress in coronary arteries can help predict heart attacks

A heart attack is like an earthquake. When a patient is having a heart attack, it’s easy for cardiologists to look at a coronary artery and identify the blockages that are causing trouble. However, predicting exactly where and when a seismic fault will rupture in the future is a scientific challenge – in both geology and cardiology.

In a recent paper in Journal of the American College of Cardiology, Habib Samady, MD, and colleagues at Emory and Georgia Tech show that the goal is achievable, in principle. Calculating and mapping how hard the blood’s flow is tugging on the coronary artery wall – known as “wall shear stress” – could allow cardiologists to predict heart attacks, the results show.

Map of wall shear stress (WSS) in a coronary artery from someone who had a heart attack

“We’ve made a lot of progress on defining and identifying ‘vulnerable plaque’,” says Samady, director of interventional cardiology/cardiac catheterization at Emory University Hospital. “The techniques we’re using are now fast enough that they could help guide clinical decision-making.”

Here’s where the analogy to geography comes in. By vulnerable plaque, Samady means a spot in a coronary artery that is likely to burst and cause a clot nearby, obstructing blood flow. The researchers’ approach, based on fluid dynamics, involves seeing a coronary artery like a meandering river, in which sediment (atherosclerotic plaque) builds up in some places and erodes in others. Samady says it has become possible to condense complicated fluid dynamics calculations, so that what once took months now might take a half hour.

Previous research from Emory showed that high levels of wall shear stress correlate with changes in the physical/imaging characteristics of the plaque over time. It gave hints where bad things might happen, in patients with relatively mild heart disease. In contrast, the current results show that where bad things actually did happen, the shear stress was significantly higher.

“This is the most clinically relevant work we have done,” says Parham Eshtehardi, MD, a cardiovascular research fellow, looking back on the team’s previous research, published in Circulation in 2011.  Read more

Posted on by Quinn Eastman in Heart Leave a comment

Blue plate special: express delivery to the heart

The anti-arrhythmia drug amiodarone is often prescribed for control of atrial fibrillation, but can have toxic effects upon the lungs, eyes, thyroid and liver. Emory and Georgia Tech scientists have developed a method for delivering amiodarone directly to the heart in an extended release gel to reduce off-target effects.

The results were published in Circulation: Arrhythmia and Electrophysiology.

The senior author is Rebecca Levit, MD, assistant professor of medicine (cardiology) at Emory University School of Medicine and adjunct in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory. Graduate student Jose Garcia – part of co-author Andres Garcia’s lab at Georgia Tech — and Peter Campbell, MD are the first authors.

An amiodarone-containing gel was applied to the outside of the heart by a minimally invasive procedure. After a one-time delivery, the gel could reduce the duration of atrial fibrillation and the likelihood of its development for a month in a pig model. The researchers were also able to show that amiodarone did not have toxic effects on the pigs’ lungs.

As noted in the book Off-label prescribing – Justifying unapproved medicine, amiodarone is “one of the very few drugs approved by the FDA in modern times without rigorous randomized clinical trials.” Read more

Posted on by Quinn Eastman in Heart Leave a comment

For nanomedicine, cell sex matters

The biological differences between male and female cells may influence their uptake of nanoparticles, which have been much discussed as specific delivery vehicles for medicines.

Biomedical engineer Vahid Serpooshan, PhD

New Emory/Georgia Tech BME faculty member Vahid Serpooshan has a recent paper published in ACS Nano making this point. He and his colleagues from Brigham and Women’s Hospital and Stanford/McGill/UC Berkeley tested amniotic stem cells, derived from placental tissue. They found that female amniotic cells had significantly higher uptake of nanoparticles (quantum dots) than male cells. The effect of cell sex on nanoparticle uptake was reversed in fibroblasts. The researchers also found out that female versus male amniotic stem cells exhibited different responses to reprogramming into induced pluripotent stem cells (iPSCs).

Female human amniotic stem cells with nanoparticles .Green: quantum dots/ nanoparticles; red: cell staining; blue: nuclei.

“We believe this is a substantial discovery and a game changer in the field of nanomedicine, in taking safer and more effective and accurate steps towards successful clinical applications,” says Serpooshan, who is part of the Department of Pediatrics and the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory.

Serpooshan’s interests lie in the realm of pediatric cardiology. His K99 grant indicates that he is planning to develop techniques for recruiting and activating cardiomyoblasts, via “a bioengineered cardiac patch delivery of small molecules.” Here at Emory, he joins labs with overlapping interests such as those of Mike Davis, Hee Cheol Cho and Nawazish Naqvi. Welcome!

Posted on by Quinn Eastman in Heart Leave a comment

#AHA17 highlight: cardiac pacemaker cells

At the American Heart Association Scientific Sessions meeting this week, Hee Cheol Cho’s lab is presenting three abstracts on pacemaker cells. These cells make up the sinoatrial node, which generates electrical impulses driving our heart beats. Knowing how to engineer them could enhance cardiologists’ ability to treat arrhythmias, especially in pediatric patients, but that goal is still some distance away.

Just a glimpse of the challenge comes from graduate student Sandra Grijalva’s late breaking oral abstract describing “Induced Pacemaker Spheroids as a Model to Reverse-Engineer the Native Sinoatrial Node”, which was presented yesterday.

Cho has previously published how induced pacemaker cells can be created by introducing the TBX18 gene into rat cardiac muscle cells. In the new research, when a spheroid of induced pacemaker cells was surrounded by a layer of cardiac muscle cells, the IPM cells were able to drive the previously quiescent nearby cells at around 145 beats per minute. [For reference, rats’ hearts beat in living animals at around 300 beats per minute.] Read more

Posted on by Quinn Eastman in Heart Leave a comment

Seeing the nuts and bolts of neurons

Cool photo alert! James Zheng’s lab at Emory is uncommonly good at making photos and movies showing how neurons remodel themselves. They recently published a paper in Journal of Cell Biology showing how dendritic spines, which are small protrusions on neurons, contain concentrated pools of G-actin.

Actin, the main component of cells’ internal skeletons, is a small sturdy protein that can form long strings or filaments. It comes in two forms: F-actin (filamentous) or G-actin (globular). It is not an exaggeration to call F- and G-actin neurons’ “nuts and bolts.”

Think of actin monomers like Lego bricks. They can lock together in regular structures, or they can slosh around in a jumble. If the cell wants to build something, it needs to grab some of that slosh (G-actin) and turn them into filaments. Remodeling involves breaking down the filaments.

At Lab Land’s request, postdoc and lead author Wenliang Lei picked out his favorite photos of neurons, which show F-actin in red and G-actin in green. Zheng’s lab has developed probes that specifically label the F- and G- forms. Where both forms are present, such as in the dendritic spines, an orange or yellow color appears.

Why care about actin and dendritic spines?

*The Journal of Cell Biology paper identified the protein profilin as stabilizing neurons’ pool of G-actin. Profilin is mutated in some cases of ALS (amyotrophic lateral sclerosis), although exactly how the mutations affect actin dynamics is now under investigation.

Read more

Posted on by Quinn Eastman in Neuro Leave a comment