Brain organoid model shows molecular signs of Alzheimer’s before birth

In a model of human fetal brain development, Emory researchers can see perturbations of epigenetic markers in cells derived from people with familial early-onset Alzheimer’s disease, which takes decades to appear. This suggests that in people who inherit mutations linked to early-onset Alzheimer’s, it would be possible to detect molecular changes in their brains before birth. The results were published in the journal Cell Reports. “The beauty of using organoids is that they allow us to Read more

The earliest spot for Alzheimer's blues

How the most common genetic risk factor in AD interacts with the earliest site of neurodegeneration Read more

Make ‘em fight: redirecting neutrophils in CF

Why do people with cystic fibrosis (CF) have such trouble with lung infections? The conventional view is that people with CF are at greater risk for lung infections because thick, sticky mucus builds up in their lungs, allowing bacteria to thrive. CF is caused by a mutation that affects the composition of the mucus. Rabindra Tirouvanziam, an immunologist at Emory, says a better question is: what type of cell is supposed to be fighting the Read more

magnetic resonance imaging

Revealing brain temperature via MR imaging and biophysical modeling

Magnetic resonance (MR) imaging technology and biophysical modeling being developed at Emory and Georgia Tech could provide more accurate predictions of brain temperature, which is difficult for doctors to directly assess. The temperature of the brain is critical information after someone has experienced a stroke or cardiac arrest, and even more important during treatment. 

The results of a pilot study were published today in the journal Communications Physics.

The project grew out of a collaboration between Candace Fleischer, PhD, an assistant professor of radiology and imaging sciences at Emory, and Andrei Fedorov, PhD, a world expert on thermodynamics and biophysical modeling and a professor of mechanical engineering at Georgia Tech. The first author of the paper is Georgia Tech/Emory biomedical engineering graduate student Dongsuk Sung.

The researchers developed a biophysical model based on heat transfer, using data acquired by imaging individuals’ brain tissue and blood vessel structure. As predicted and in agreement with MR whole brain measurements, brain temperature is slightly higher than core body temperature – about 1 degree C; there are “hot” spots in the brain domains with high rate of metabolism; and the regions of the brain that are closer to the scalp are also slightly cooler than the midbrain.

“We find that every subject’s brain temperature and spatial temperature patterns are different, setting the stage for a personalized approach to managing brain temperature,” says Fleischer, who is also a faculty member in the Wallace H. Coulter Department of Biomedical Engineering and Georgia Tech at Emory.

Metabolic heat, cerebral blood flow, and model-predicted brain temperature maps for three healthy volunteers. From Sung et al (2021), via Creative Commons 4.0

Researchers then compared the predictions of their model with measurements based on the magnetic resonance properties of water, which change with temperature, and the temperature-insensitive brain metabolite N-acetylaspartate. The Communications Physics paper shows temperature modeling and MR-based measurements for three healthy volunteers.

Fleischer recently received a three-year, $400,000 Trailblazer grant from the National Institute of Biomedical Imaging and Bioengineering to monitor brain temperature while patients are undergoing therapeutic hypothermia after cardiac arrest. More information about that here.

Read more

Posted on by Quinn Eastman in Uncategorized Leave a comment

Trailblazer award for MR monitoring brain temperature

In the emergency department, the temperature of the brain is critical information after someone has a stroke or cardiac arrest, and even more important during treatment. Yet it is difficult for doctors to accurately or directly measure brain temperature.

Magnetic resonance imaging technology being developed at Emory University School of Medicine could provide more accurate measurements. A team of researchers has received a three-year, $400,000 grant from the National Institute of Biomedical Imaging and Bioengineering (NIBIB) to monitor brain temperature while patients are undergoing therapeutic hypothermia after cardiac arrest. Therapeutic hypothermia, or controlled cooling, is a treatment used to protect the brain after loss of blood flow. While cooling is used in many hospitals, it is not widely implemented nor has it been optimized in terms of dosage or timing.

Candace Fleischer, in front of a MRI scanner

The project is led by Candace Fleischer, PhD, an assistant professor of radiology and imaging sciences at Emory. The grant is part of NIBIB’s Trailblazer program, which is designed for early stage investigators to pursue research in new directions.

“Our goals are to develop a new method for non-invasive brain temperature monitoring, and to demonstrate the ability to measure brain-body temperature differences in cardiac arrest patients during therapeutic cooling,” says Fleischer, who is also a member of the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory.

“Currently, therapeutic hypothermia is monitored using core body temperature due to a lack of non-invasive tools,” she adds. “Yet, we know brain temperature tends to be higher than body temperature, and brain and body temperatures are decoupled after injury. Accurate measurements of brain temperature are needed to optimize clinical implementation.”

Read more

Posted on by Quinn Eastman in Neuro Leave a comment

Biomedical engineering links Emory, Georgia Tech in medical discoveries

Larry McIntire, PhD

Despite its youth, the 20-year-old field of biomedical engineering is the fastest growing engineering academic program today. The joint Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory, with Larry McIntire as chair, has emerged on the forefront of biotechnology-related research and education.

“By integrating the fields of life sciences with engineering,” McIntire explains, “we can better understand the mechanisms of disease and develop new ways to diagnose and treat medical problems. We are working collaboratively in the fields of biomedical nanotechnology, predictive health, regenerative medicine, and health care robotics, among others.

Read more

Posted on by admin in Uncategorized Leave a comment

Combined MR/PET imaging

On Thursday, April 8, Emory’s Center for Systems Imaging, directed by Department of Radiology Chair Carolyn Meltzer, MD, and the Atlanta Clinical & Translational Science Institute celebrated the launch of the CSI’s prototype MR/PET imaging scanner.

View of MR/PET

View of MR/PET scanner from front, with Ciprian Catana of MGH and Larry Byars of Siemens

The scanner is one of four world-wide and one of two in the United States, and permits simultaneous MR (magnetic resonance) and PET (positron emission tomography) imaging in human subjects. This provides the advantage of being able to combine the anatomical information from MR with the biochemical/metabolic information from PET. Potential applications include functional brain mapping and the study of neurodegenerative diseases, drug addiction and brain cancer.

Thursday’s event brought together leaders of the three other MR/PET programs in Boston, Jülich and Tübingen, the Siemens engineers who designed the device, and the Atlanta research community to explore the possibilities of the technology.

Read more

Posted on by Quinn Eastman in Neuro Leave a comment