Warren symposium follows legacy of geneticist giant

If we want to understand how the brain creates memories, and how genetic disorders distort the brain’s machinery, then the fragile X gene is an ideal place to start. That’s why the Stephen T. Warren Memorial Symposium, taking place November 28-29 at Emory, will be a significant event for those interested in neuroscience and genetics. Stephen T. Warren, 1953-2021 Warren, the founding chair of Emory’s Department of Human Genetics, led an international team that discovered Read more

Mutations in V-ATPase proton pump implicated in epilepsy syndrome

Why and how disrupting V-ATPase function leads to epilepsy, researchers are just starting to figure Read more

Tracing the start of COVID-19 in GA

At a time when COVID-19 appears to be receding in much of Georgia, it’s worth revisiting the start of the pandemic in early 2020. Emory virologist Anne Piantadosi and colleagues have a paper in Viral Evolution on the earliest SARS-CoV-2 genetic sequences detected in Georgia. Analyzing relationships between those virus sequences and samples from other states and countries can give us an idea about where the first COVID-19 infections in Georgia came from. We can draw Read more

Department of Radiology and Imaging Sciences

Revealing brain temperature via MR imaging and biophysical modeling

Magnetic resonance (MR) imaging technology and biophysical modeling being developed at Emory and Georgia Tech could provide more accurate predictions of brain temperature, which is difficult for doctors to directly assess. The temperature of the brain is critical information after someone has experienced a stroke or cardiac arrest, and even more important during treatment. 

The results of a pilot study were published today in the journal Communications Physics.

The project grew out of a collaboration between Candace Fleischer, PhD, an assistant professor of radiology and imaging sciences at Emory, and Andrei Fedorov, PhD, a world expert on thermodynamics and biophysical modeling and a professor of mechanical engineering at Georgia Tech. The first author of the paper is Georgia Tech/Emory biomedical engineering graduate student Dongsuk Sung.

The researchers developed a biophysical model based on heat transfer, using data acquired by imaging individuals’ brain tissue and blood vessel structure. As predicted and in agreement with MR whole brain measurements, brain temperature is slightly higher than core body temperature – about 1 degree C; there are “hot” spots in the brain domains with high rate of metabolism; and the regions of the brain that are closer to the scalp are also slightly cooler than the midbrain.

“We find that every subject’s brain temperature and spatial temperature patterns are different, setting the stage for a personalized approach to managing brain temperature,” says Fleischer, who is also a faculty member in the Wallace H. Coulter Department of Biomedical Engineering and Georgia Tech at Emory.

Metabolic heat, cerebral blood flow, and model-predicted brain temperature maps for three healthy volunteers. From Sung et al (2021), via Creative Commons 4.0

Researchers then compared the predictions of their model with measurements based on the magnetic resonance properties of water, which change with temperature, and the temperature-insensitive brain metabolite N-acetylaspartate. The Communications Physics paper shows temperature modeling and MR-based measurements for three healthy volunteers.

Fleischer recently received a three-year, $400,000 Trailblazer grant from the National Institute of Biomedical Imaging and Bioengineering to monitor brain temperature while patients are undergoing therapeutic hypothermia after cardiac arrest. More information about that here.

Read more

Posted on by Quinn Eastman in Uncategorized Leave a comment

Trailblazer award for MR monitoring brain temperature

In the emergency department, the temperature of the brain is critical information after someone has a stroke or cardiac arrest, and even more important during treatment. Yet it is difficult for doctors to accurately or directly measure brain temperature.

Magnetic resonance imaging technology being developed at Emory University School of Medicine could provide more accurate measurements. A team of researchers has received a three-year, $400,000 grant from the National Institute of Biomedical Imaging and Bioengineering (NIBIB) to monitor brain temperature while patients are undergoing therapeutic hypothermia after cardiac arrest. Therapeutic hypothermia, or controlled cooling, is a treatment used to protect the brain after loss of blood flow. While cooling is used in many hospitals, it is not widely implemented nor has it been optimized in terms of dosage or timing.

Candace Fleischer, in front of a MRI scanner

The project is led by Candace Fleischer, PhD, an assistant professor of radiology and imaging sciences at Emory. The grant is part of NIBIB’s Trailblazer program, which is designed for early stage investigators to pursue research in new directions.

“Our goals are to develop a new method for non-invasive brain temperature monitoring, and to demonstrate the ability to measure brain-body temperature differences in cardiac arrest patients during therapeutic cooling,” says Fleischer, who is also a member of the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory.

“Currently, therapeutic hypothermia is monitored using core body temperature due to a lack of non-invasive tools,” she adds. “Yet, we know brain temperature tends to be higher than body temperature, and brain and body temperatures are decoupled after injury. Accurate measurements of brain temperature are needed to optimize clinical implementation.”

Read more

Posted on by Quinn Eastman in Neuro Leave a comment

Seeing the value: prostate cancer imaging agent developed at Winship

A study from Winship Cancer Institute of Emory University has the potential to change how patients whose prostate cancer recurs after prostatectomy are treated. The study was featured in both the plenary session and press program of the American Society for Radiation Oncology (ASTRO) Annual Meeting on Monday, October 26.

The Emory Molecular Prostate Imaging for Radiotherapy Enhancement, or EMPIRE-1 trial (NCT01666808), is the first randomized trial of men with prostate cancer with recurring cancer to show that treatment based on advanced molecular imaging can improve disease-free survival rates. The molecular imaging used in the study, the radiotracer fluciclovine (18F) PET, was invented and developed at Emory and Winship.

The phase II/III trial was led by Winship radiation oncologist and prostate cancer specialist Ashesh B. Jani, MD, MSEE, FASTRO, and Winship nuclear radiology specialist David M. Schuster, MD, FACR. The trial enrolled 165 patients whose cancer recurred after having undergone prostatectomies. One group received radiation therapy based on conventional imaging. The other group received treatment that was finalized based on imaging with the fluciclovine PET radiotracer. Those whose treatment was adjusted according to the results of the advanced molecular imaging showed an improvement in the cancer control end point.

“At three years, the group getting treatment guided by PET fluciclovine had a 12 percent better cancer control rate, and this persisted at four years as well, with a 24% improvement,” says Jani. “We think the improvement was seen because the novel PET allowed for better selection of patients for radiation, better treatment decisions, and better radiation target design.”

Fluciclovine PET imaging has been getting some attention in the urology/prostate cancer world.

More details here.

Posted on by Quinn Eastman in Cancer Leave a comment

Radiologists wrestle with robots – ethically

Radiologists look at and analyze images, tasks computer algorithms can do. This is fertile soil for artificial intelligence (AI) — enough so that some predict that AI will replace radiologists.

John Banja, PhD

Emory bioethicist John Banja says: don’t believe the hype. AI will generate tools radiologists will want to use, he says. But human experts will have plenty to do, including making sure that the algorithms are properly vetted and trained on appropriate data.

“We already know what a lot of the ethical issues are going to be…informed consent, privacy, data protection, ownership, all that kind of stuff,” Banja recently told Health Imaging. “What we need to do is drill down to the next level, especially the practice level.”

Banja has received a grant from the Advanced Radiology Services Foundation to support a series of podcasts with radiologists over the next two years. He will be teaming up with Emory radiologist Rich Duszak, a specialist in health policy, and Norm Beauchamp, medical dean at Michigan State.

Banja and Duszak are still planning podcast sessions and lining up interviews, but they said the first episode will be on “AI hype”, and the second will cover standard of care/medical malpractice, with future issues on FDA standards.

Duszak comments on how radiologists need to take control of the algorithms in this video.

Also, with radiology chair Carolyn Meltzer, Banja recently published a review on ethics related to radiology and AI, exploring issues such as selection bias and stretching algorithms too far. Read more

Posted on by Quinn Eastman in Uncategorized Leave a comment

FDA approves Emory-developed cancer imaging probe

A cancer imaging agent that was originally developed at Emory was approved on Friday, May 27 by the U.S. Food and Drug Administration.

Axumin, a PET (positron emission tomography) imaging agent, is indicated for diagnosis of recurrent prostate cancer in men who have elevated PSA levels after previous treatment. Axumin, now being commercialized by UK-based Blue Earth Diagnostics, is also known as 18F-fluciclovine or FACBC (an abbreviation for anti-1-amino-3-[18F]fluorocyclobutane-1- carboxylic acid).

goodman-schuster

Mark Goodman, PhD (left) and David Schuster, MD (right)

Imaging using axumin/fluciclovine is expected to help doctors detect and localize recurrent prostate cancer, and could guide biopsy or the planning of additional treatment. Fluciclovine was originally developed at Emory by Mark Goodman and Timothy Shoup, who is now at Massachusetts General Hospital.

The earliest research on fluciclovine in the 1990s was on its use for imaging brain tumors, and it received a FDA “orphan drug” designation for the diagnosis of glioma in 2015. About a decade ago, Emory researchers stumbled upon fluciclovine’s utility with prostate cancer, while investigating its activity in a patient who appeared to have renal cancer, according to radiologist David Schuster, who has led several clinical studies testing fluciclovine.

“This led us to see if this radiotracer would be good for looking at prostate cancer, specifically because of its low native urinary excretion,” Schuster is quoted as saying in the radiology newsletter Aunt Minnie. “If you look at the history of medical science, it is taking advantage of the unexpected.”

Early research on the probe was supported by Nihon Mediphysics, and later support for clinical research on FACBC/fluciclovine came from the National Cancer Institute, the Georgia Research Alliance and the Georgia Cancer Coalition. [Both Emory and Goodman are eligible to receive royalties from its commercialization]. Additional information here.

References for two completed studies on fluciclovine in recurrent prostate cancer

Odewole OA et al. Comparison with CT imaging (2016) 

Schuster DM et al. Head to head comparison with ProstaScint (2014). Read more

Posted on by Quinn Eastman in Cancer Leave a comment

Promising probe for detecting recurrent prostate cancer

Part of the new Winship magazine feature on prostate cancer focuses on a PET imaging probe called FACBC, which was developed by radiologists at Emory. 18F-FACBC (anti-1-amino-3-[18F]fluorocyclobutane-1-carboxylic acid, also called “fluciclovine”) has a lengthening track record in detecting recurrent prostate cancer.

Structure of FACBC, from patent application.

Usually in PET imaging, radioactive glucose is injected into the body, and since cancer cells have a sweet tooth, they take up a lot of the radioactive tracer. But plenty of the tracer also appears in the urine, complicating prostate cancer detection efforts, since the prostate is so close to the bladder. In contrast, FACBC is readily taken up by prostate cancer cells, but doesn’t appear as much in urine.

Because of space considerations, we did not include David Schuster’s description of how FACBC’s utility in prostate was first discovered. Several years ago, he and Mark Goodman had begun investigating the probe’s potential in imaging brain tumors and kidney tumors, and used it with a patient with a large renal mass and many enlarged lymph nodes, as described in the radiology newsletter Aunt Minnie. Read more

Posted on by Quinn Eastman in Cancer Leave a comment