Warren symposium follows legacy of geneticist giant

If we want to understand how the brain creates memories, and how genetic disorders distort the brain’s machinery, then the fragile X gene is an ideal place to start. That’s why the Stephen T. Warren Memorial Symposium, taking place November 28-29 at Emory, will be a significant event for those interested in neuroscience and genetics. Stephen T. Warren, 1953-2021 Warren, the founding chair of Emory’s Department of Human Genetics, led an international team that discovered Read more

Mutations in V-ATPase proton pump implicated in epilepsy syndrome

Why and how disrupting V-ATPase function leads to epilepsy, researchers are just starting to figure Read more

Tracing the start of COVID-19 in GA

At a time when COVID-19 appears to be receding in much of Georgia, it’s worth revisiting the start of the pandemic in early 2020. Emory virologist Anne Piantadosi and colleagues have a paper in Viral Evolution on the earliest SARS-CoV-2 genetic sequences detected in Georgia. Analyzing relationships between those virus sequences and samples from other states and countries can give us an idea about where the first COVID-19 infections in Georgia came from. We can draw Read more

Uncategorized

Powerful opioids + kids: bad combo

New research demonstrates the dangers of having powerful opioids such as fentanyl around children and adolescents. National Poison Data System reports show that many are ingesting the drugs unintentionally, but particularly concerning is a rise in the proportion of suspected suicides.

Among children, the proportion of opioid poisonings resulting in admission to a hospital critical care unit has increased since 2005, according to an analysis by Emory and Children’s Healthcare of Atlanta doctors.

Megan Land, MD, Jocelyn Grunwell, MD, PhD and colleagues in the Division of Critical Care in the Department of Pediatrics conducted the research, which is published in the journal Clinical Toxicology.

In a December 20 broadcast, critical care fellow Land told NPR’s Rhitu Chatterjee about her encounter with a child with severe respiratory distress as a result of consuming a fentanyl patch. Grunwell has previous experience studying pediatric intensive care admissions procedures and poisonings.

Read more

Posted on by Quinn Eastman in Uncategorized Leave a comment

Shout out to Behind the Microscope podcast

For podcast listeners in the Emory biomedical research community, Behind the Microscope is a must-follow. It is produced by four students in Emory’s MD/PhD program: Carey Jansen, Joe Behnke, Michael Sayegh and Bejan Saeedi. They’re focused on career issues such as mentorship and grant strategy rather than the science itself (thus, complementary to Lab Land).

In their list of interviewees so far, they lean toward their fellow “double docs.” Since starting off in October, they’ve talked with Anita Corbett, Brian Robinson, Sean Stowell, Stefi Barbian and Steven Sloan (MD/PhDs underlined). Here are the Apple and Google podcast listings; episodes are also available on platforms such as Anchor.fm.

 

 

Posted on by Quinn Eastman in Uncategorized Leave a comment

Tracking how steroid hormone receptor proteins evolved

When thinking about the evolution of female and male, consider that the first steroid receptor proteins, which emerged about 550 million years ago, were responsive to estrogen. The ancestor of other steroid hormone receptors, responsive to hormones such as testosterone, progesterone and cortisol, emerged many millions of years later.

Blue = estrogen-responsive receptors, Orange = non-aromatized (progesterone, testosterone, cortisol) hormone-responsive

Biochemist Eric Ortlund and colleagues have a new paper in Structure that reconstructs how interactions of steroid receptor proteins evolved over time. This is a complex area to model, since the receptors change shape when they bind their respective hormones, allowing them to bring in other proteins and activate genes.

First author C. Denise Okafor, a FIRST postdoctoral fellow at Emory, will be starting a position as assistant professor at Penn State next month.

The scientists also show that a mutation in the mineralocorticoid receptor associated with severe hypertension (S810L), which makes the receptor more promiscuous, restores an ancestral interaction within the protein.

“Evolutionary substitutions rewired the networks, subsequently altering hormonal interactions and allowing steroid receptors to achieve ligand specificity over time,” the authors write.

Posted on by Quinn Eastman in Uncategorized Leave a comment

Radiologists wrestle with robots – ethically

Radiologists look at and analyze images, tasks computer algorithms can do. This is fertile soil for artificial intelligence (AI) — enough so that some predict that AI will replace radiologists.

John Banja, PhD

Emory bioethicist John Banja says: don’t believe the hype. AI will generate tools radiologists will want to use, he says. But human experts will have plenty to do, including making sure that the algorithms are properly vetted and trained on appropriate data.

“We already know what a lot of the ethical issues are going to be…informed consent, privacy, data protection, ownership, all that kind of stuff,” Banja recently told Health Imaging. “What we need to do is drill down to the next level, especially the practice level.”

Banja has received a grant from the Advanced Radiology Services Foundation to support a series of podcasts with radiologists over the next two years. He will be teaming up with Emory radiologist Rich Duszak, a specialist in health policy, and Norm Beauchamp, medical dean at Michigan State.

Banja and Duszak are still planning podcast sessions and lining up interviews, but they said the first episode will be on “AI hype”, and the second will cover standard of care/medical malpractice, with future issues on FDA standards.

Duszak comments on how radiologists need to take control of the algorithms in this video.

Also, with radiology chair Carolyn Meltzer, Banja recently published a review on ethics related to radiology and AI, exploring issues such as selection bias and stretching algorithms too far. Read more

Posted on by Quinn Eastman in Uncategorized Leave a comment

Biochemists grab slippery target: LRH-1

To fight fat, scientists had to figure out how to pin down a greasy, slippery target. Researchers at Emory University and Baylor College of Medicine have identified compounds that potently activate LRH-1, a liver protein that regulates the metabolism of fat and sugar. These compounds have potential for treating diabetes, fatty liver disease and inflammatory bowel disease.

Their findings were recently published online in Journal of Medicinal Chemistry.

LRH-1 is thought to sense metabolic state by binding a still-undetermined group of greasy molecules: lipids or phospholipids. It is a nuclear receptor, a type of protein that turns on genes in response to hormones or vitamins. The challenge scientists faced was in designing drugs that fit into the same slot occupied by the lipids.

“Phospholipids are typically big, greasy molecules that are hard to deliver as drugs, since they are quickly taken apart by the digestive system,” says Eric Ortlund, PhD, associate professor of biochemistry at Emory University School of Medicine. “We designed some substitutes that don’t fall apart, and they’re highly effective – 100 times more potent that what’s been found already.”

Previous attempts to design drugs that target LRH-1 ran into trouble because of the grease. Two very similar molecules might bind LRH-1 in opposite orientations. Ortlund’s lab worked with Emory chemist Nathan Jui, PhD and his colleagues to synthesize a large number of compounds, designing a “hook” that kept them in place. Based on previous structural studies, the hook could stop potential drugs from rotating around unpredictably. Read more

Posted on by Quinn Eastman in Uncategorized Leave a comment

Mother’s milk is OK, even for the in-between babies

“Stop feeding him milk right away – just to be safe” was not what a new mother wanted to hear. The call came several days after Tamara Caspary gave birth to fraternal twins, a boy and a girl. She and husband David Katz were in the period of wonder and panic, both recovering and figuring out how to care for them.

“A nurse called to ask how my son was doing,” says Caspary, a developmental biologist in Emory’s Department of Human Genetics. “She started asking about vomiting and other specific symptoms.”

Her son had tested positive by newborn screening for a rare disorder called galactosemia. Galactosemia is an inherited disease that results from inability to metabolize galactose, a component of human milk and cow-milk-based formula. If a baby with “classic” galactosemia continues to drink milk, the baby may quickly develop symptoms such as jaundice, vomiting and diarrhea, progressing to liver disease and other serious complications that can lead to infant death. If a newborn has classic galactosemia, it is critical for the baby to stop drinking milk and switch to a low-galactose formula, such as soy-based formula, as soon as possible.

Caspary and Katz, a cell biologist, learned several days later that their son did not have classic galactosemia but instead had inherited Duarte galactosemia, a milder, more common form of the metabolic disorder, affecting more than 1 in 5,000 children in the United States. But there was still a looming question.

“We needed to figure out what to feed the baby!” Katz exclaimed, recalling their confusion years later.

The looming question was: what to feed the baby?

Their pediatrician didn’t know what to recommend. Galactosemia, in whatever form, is rare enough in the US that most pediatricians don’t develop experience with it. There was no uniform standard of care, and state-level guidelines for children with Duarte galactosemia varied widely, from no dietary restrictions to banning all milk products for the first year. Some of the limited research available at the time suggested that affected children might experience developmental problems as they grew up. Read more

Posted on by Quinn Eastman in Uncategorized 1 Comment

Predict the future of critical care in #STATMadness

Emory is participating in STAT Madness, a “March Madness” style bracket competition featuring biomedical research advances instead of basketball teams. Universities or research institutes nominate their champions, research papers that were published the previous year. It’s like “Battle of the Bands.” Whoever gets the loudest — or most numerous — cheers wins.

Please check out all 64 entries, follow the 2019 STAT Madness bracket and vote here:
https://www.statnews.com/feature/stat-madness/bracket/

Emory’s entry for 2019:
It’s like the “precogs” who predict crime in the movie Minority Report, but for sepsis, the deadly response to infection. Shamim Nemati and colleagues have been exploring ways to analyze vital signs in ICU patients and predict sepsis, hours before clinical staff might otherwise notice.

As landmark clinical studies have documented, every hour of delay in giving someone with sepsis antibiotics increases their risk of mortality. So detecting sepsis as early as possible could save thousands of lives. Many hospitals have developed “sniffer” systems that monitor patients for sepsis, but this algorithm tries to spot problems way before they become apparent.

As published in 2018 in Critical Care Medicine, the algorithm can predict sepsis onset—with some false alarms—four, eight, even 12 hours ahead of time. No algorithm is going to be perfect, but it was better than any other previous sepsis predictor. The technology is headed for additional testing and evaluation at several medical centers, as part of a project supported by the federal Biomedical Advanced Research and Development Authority (BARDA).

You can fill out a whole bracket or you can just vote for Emory. The contest will last several rounds. The first round began on Monday, March 4, and lasts until the end of the week. Before 10 am Eastern time Monday morning, there were already more than 5,000 brackets entered!

If Emory advances, then people will be able to continue voting for us starting on Friday. Emory’s first opponent is a regional rival, Vanderbilt University School of Medicine. We are on the upper left side of the bracket.

STAT News is a Boston-based news organization covering biomedical research, pharma and biotech. If you feel like it, please share on social media using the hashtag #statmadness.

Posted on by Quinn Eastman in Uncategorized Leave a comment

Genomics plus human intelligence

Emory geneticists Hong Li and Michael Gambello recently identified the first pediatric case of a rare inherited metabolic disorder: glucagon receptor deficiency. Their findings, published in Molecular Genetics and Metabolic Reports, show the power of gene sequencing to solve puzzles – when combined with human intelligence. Although the diagnosis did not resolve all the issues faced by the patient, it allowed doctors to advise the family about diet and possible pancreatic tumor risk.

The family of a now 9-year-old girl came to Li when the girl was 4 years old. Based on newborn screening, the girl had been diagnosed with a known disorder called arginase deficiency. Arginase breaks down the amino acid arginine; if it is deficient, arginine and toxic ammonia tend to accumulate. At birth, the girl had high arginine levels – hence the initial diagnosis.

The girl had a history of low body weight, anorexia and intermittent vomiting, which led doctors to place a feeding tube through the abdominal wall into her stomach. For several years, she was given a special low-protein liquid diet and supplements, aimed at heading off nutritional imbalance and tissue breakdown. However, she did not have intellectual disability or neurological symptoms, which are often seen with arginase deficiency.

In fact, her blood amino acids, including arginine, were fully normalized, and a genetic test for arginase deficiency was normal as well.  These results were perplexing. By reviewing all the clinical, biochemical and molecular data, Li concluded the girl did not have arginase deficiency, and began looking for an alternative diagnosis. Read more

Posted on by Quinn Eastman in Uncategorized Leave a comment

Shape-shifting RNA regulates viral sensor

Congratulations to Emory biochemists Brenda Calderon and Graeme Conn. Their recent Journal of Biological Chemistry paper on a shape-shfting RNA was selected as an Editor’s Pick and cited as a “joy to read… Technically, the work is first class, and the writing is clear.”

Calderon, a former BCDB graduate student and now postdoc, was profiled by JBC in August.

Brenda Calderon, PhD

Calderon and Conn’s JBC paper examines regulation of the enzyme OAS (oligoadenylate synthetase). OAS senses double-stranded RNA: the form that viral genetic material often takes. When activated, OAS makes a messenger molecule that drives internal innate immunity enzymes to degrade the viral material (see below).

OAS is in turn regulated by a non-coding RNA, called nc886. Non-coding means this RNA molecule is not carrying instructions for building a protein. Calderon and Conn show that nc886 takes two different shapes and only one of them activates OAS.

Conn says in a press release prepared by JBC that although nc886 is present in all human cells, it’s unknown how abundance of its two forms might change in response to infection. Read more

Posted on by Quinn Eastman in Uncategorized Leave a comment

Tracking a frameshift through the ribosome

Ribosomes, the factories that assemble proteins in cells, read three letters of messenger RNA at a time. Occasionally, the ribosome can bend its rules, and read either two or four nucleotides, altering how downstream information is read: frameshifting.

This week, Christine Dunham’s lab in the Department of Biochemistry has a paper in PNAS on how ribosomal frameshifting works, one of several she has published on this topic. The first author is postdoc Samuel Hong, now at MD Anderson. A commentary in PNAS calls their paper a “major advance” and “culmination of a half-century quest.”

A suppressor tRNA can occupy more than one site on the ribosome. Adapted figure courtesy of Christine Dunham

Some antibiotics disrupt protein synthesis by encouraging frameshifting to occur, so a thorough understanding of frameshifting benefits antibiotic research. Also, scientists are aiming to use the process to customize proteins for industrial and pharmaceutical applications, by inserting amino acid building blocks not found in nature.

When mutations add or subtract a letter from a protein-coding gene, that usually turns the rest of the gene to nonsense. Compensatory mutations in the same gene can push the genetic letters back into the correct frame. However, others are separate, found within the machinery for translating the genetic code, namely transfer RNAs: the adaptors that bring amino acids into the ribosome. Suppressor tRNAs can compensate for a forward frameshift in another gene.

The Dunham lab’s new paper solves the structure of a bacterial ribosome undergoing “recoding” influenced by a suppressor tRNA. Her group had previously captured how the ribosomes decode this tRNA in one site of the ribosome, the aminoacyl or A site, in a 2014 PNAS paper. The new structures show how the tRNA moves through the ribosome out-of-frame to recode. The tRNA undergoes unusual rearrangements that cause the ribosome to lose its grip on the mRNA frame and allows the tRNA to form new interactions with the ribosome to shift into a new reading frame.

Posted on by Quinn Eastman in Uncategorized Leave a comment