Brain organoid model shows molecular signs of Alzheimer’s before birth

In a model of human fetal brain development, Emory researchers can see perturbations of epigenetic markers in cells derived from people with familial early-onset Alzheimer’s disease, which takes decades to appear. This suggests that in people who inherit mutations linked to early-onset Alzheimer’s, it would be possible to detect molecular changes in their brains before birth. The results were published in the journal Cell Reports. “The beauty of using organoids is that they allow us to Read more

The earliest spot for Alzheimer's blues

How the most common genetic risk factor in AD interacts with the earliest site of neurodegeneration Read more

Make ‘em fight: redirecting neutrophils in CF

Why do people with cystic fibrosis (CF) have such trouble with lung infections? The conventional view is that people with CF are at greater risk for lung infections because thick, sticky mucus builds up in their lungs, allowing bacteria to thrive. CF is caused by a mutation that affects the composition of the mucus. Rabindra Tirouvanziam, an immunologist at Emory, says a better question is: what type of cell is supposed to be fighting the Read more

Department of Medicine

Regrowing adult heart muscle

In adulthood, our hearts generally can’t grow again in response to injury. Emory cardiology researchers Ahsan Husain and Nawazish Naqvi and their colleagues have been chipping away at this biological edifice in animal models, demonstrating that it is possible to remove constraints that prevent the heart from growing new muscle cells.

Husain and Naqvi’s teams accomplished this by combining the thyroid hormone T3 — already FDA approved — with siRNA-based inhibition of an enzyme called DUSP5. Their latest paper, published in the journal Theranostics, applies the combination in an animal model of drug-induced heart failure.

The anticancer drug doxorubicin is sometimes known as the “red devil”

The anticancer drug doxorubicin is notorious for its cardiotoxicity, yet it is a mainstay of treatment for breast cancer in adults and several types of cancer in children. Cardiotoxicity affects a fraction of breast cancer patients treated with doxorubicin (20 percent in some studies) and severely impacts mortality and quality of life.

In the mouse model, doxorubicin generates severe heart failure, with a 40 percent drop in left ventricular ejection fraction (LVEF), a measure of the heart’s pumping capacity. In response to the combination of T3 and DUSP5 siRNA, a large increase in LVEF is seen. The researchers also report that the treatment has a marked effect on the health of the animals, restoring their activity levels, grooming and posture. See the video for an example of a mouse heart treated with the T3/DUSP5 siRNA combination.

The results are potentially applicable to other situations when doctors would want to regrow or repair cardiac muscle. Husain reports plans for a clinical study in patients with drug-induced or other forms of heart failure, supported by a generous gift from the Atlanta-based ten Broeke Family Foundation.

Read more

Posted on by Quinn Eastman in Cancer, Heart Leave a comment

Strengthening SARS-CoV-2 genomic surveillance: support from CDC, private foundations

As part of an effort to strengthen genomic surveillance for emerging strains of SARS-CoV-2, the Centers for Disease Control and Prevention (CDC) has awarded a contract to Emory University researchers to characterize viral variants circulating in Georgia.

The two-year contract is part of the SPHERES (SARS-CoV-2 Sequencing for Public Health Emergency Response, Epidemiology and Surveillance) initiative, with roughly $620,000 in total costs. The principal investigator is Anne Piantadosi, MD, PhD, assistant professor of pathology and laboratory medicine, with co-investigator Mehul Suthar, PhD, assistant professor of pediatrics (infectious diseases).

Both Piantadosi and Suthar are affiliated with Emory University School of Medicine and Emory Vaccine Center. Additional Emory partners include assistant professor of medicine Ahmed Babiker, MBBS, assistant professor of medicine Jesse Waggoner, MD and assistant professor of biology Katia Koelle, PhD.

“We are analyzing SARS-CoV-2 genomes from patients in Georgia to understand the timing and source of virus introduction into our community,” Piantadosi says. “We want to know whether there have been population-level changes in the rates of viral spread, and whether there are associations between viral genotype, viral phenotype in vitro, and clinical phenotype or clinical outcome.”

Read more

Posted on by Quinn Eastman in Immunology, Uncategorized 1 Comment

Repurposing a rheumatoid arthritis drug for COVID-19

For COVID-19, many researchers around the world have tried to repurpose drugs for other indications, often unsuccessfully. New clinical trial results show that baricitinib, developed by Eli Lilly and approved for rheumatoid arthritis, can speed recovery and may reduce mortality in some groups of hospitalized COVID-19 patients.

How did this study, sponsored by the National Institute of Allergy and Infectious Diseases, come together? In part, through decade-long groundwork laid by investigators at Emory, and their collaborations with others.

The ACTT-2 results were recently published in New England Journal of Medicine. (More formal NIAID and Emory press releases are here and here.)

For several years, drug hunter and virologist Raymond Schinazi and his team had been investigating a class of medications called JAK inhibitors, as an option for tamping down chronic inflammation in HIV infection. Schinazi was one of the first at Emory to investigate the use of anti-inflammatory agents for herpesviruses and HIV in combination with antiviral drugs. He believed that these viruses “hit and run,” leaving behind inflammation, even if they later go into hiding and seem to disappear.

In Schinazi’s lab, Christina Gavegnano had shown that JAK inhibitors had both anti-inflammatory and antiviral properties in the context of HIV — a project she started as a graduate student in 2010. JAK refers to Janus kinases, which regulate inflammatory signals in immune cells.

 “Our team was working on this for 10 years for HIV,” Gavegnano says. “There was a huge amount of data that we garnered, showing how this drug class works on chronic inflammation and why.” 

Read more

Posted on by Quinn Eastman in Immunology Leave a comment

Engineered “stealth bomber” virus could be new weapon against metastatic cancer

Many cancer researchers can claim to have devised “smart bombs.” What has been missing is the stealth bomber – a delivery system that can slip through the body’s radar defenses. 

Oncolytic viruses, or viruses that preferentially kill cancer cells, have been discussed and tested for decades. An oncolytic virus against melanoma was approved by the FDA in 2015. But against metastatic cancers, they’ve always faced an overwhelming barrier: the human immune system, which quickly captures viruses injected into the blood and sends them to the liver, the body’s garbage disposal.

Researchers at Emory and Case Western Reserve have now circumvented that barrier. They’ve re-engineered human adenovirus, so that the virus is not easily caught by parts of the innate immune system.

The re-engineering makes it possible to inject the virus into the blood, without arousing a massive inflammatory reaction.

A cryo-electron microscopy structure of the virus and its ability to eliminate disseminated tumors in mice were reported on November 25 in Science Translational Medicine.

“The innate immune system is quite efficient at sending viruses to the liver when they are delivered intravenously,” says lead author Dmitry Shayakhmetov, PhD. “For this reason, most oncolytic viruses are delivered directly into the tumor, without affecting metastases. In contrast, we think it will be possible to deliver our modified virus systemically at doses high enough to suppress tumor growth — without triggering life-threatening systemic toxicities.”

Read more

Posted on by Quinn Eastman in Uncategorized Leave a comment

Detecting heart failure via wearable devices

Cardiology researchers have been eagerly taking up consumer electronic devices that include pulse oximeters. Being able to conveniently measure the level of oxygen in someone’s blood is a useful tool, whether one is interested in sleep apnea or COVID-19.

The news that the new Apple Watch includes a pulse oximeter prompted Lab Land to check in with Amit Shah, an Emory cardiologist who has been experimenting with similar devices to discriminate patients with heart failure from those with other conditions.

Shah, together with Shamim Nemati, now at UCSD, and bioinformatics chair Gari Clifford recently published a pilot study on detecting heart failure using the Samsung Simband. The Simband was a prototype device that didn’t make it to the consumer market, but it carried sensors for optical detection of blood volume changes (photoplethysmography), like on the Apple Watch. 

Heart failure causes symptoms such as shortness of breath and leg swelling, but other conditions such as anemia or lung diseases can appear similarly. The idea was to help discriminate people who might need an examination by echocardiogram (cardiac ultrasound).

Read more

Posted on by Quinn Eastman in Uncategorized Leave a comment

Microbiome critical for bone hormone action

Intestinal microbes are necessary for the actions of an important hormone regulating bone density, according to two papers from the Emory Microbiome Research Center. The papers represent a collaboration between Roberto Pacifici, MD and colleagues in the Department of Medicine and laboratory of Rheinallt Jones, PhD in the Department of Pediatrics.

Together, the results show how probiotics or nutritional supplementation could be used to modulate immune cell activity related to bone health. The two papers, published in Nature Communications and Journal of Clinical Investigation, are the first reports of a role for intestinal microbes in the mechanism of action of PTH (parathyroid hormone), Pacifici says.

PTH increases calcium levels in the blood and can either drive bone loss or bone formation, depending on how it is produced or administered. Continuous excessive production of PTH, or primary hyperparathyroidism, is a common endocrine cause of osteoporosis. Yet in another context, intermittent external PTH stimulates bone formation, and is an FDA-approved treatment for osteoporosis – also used off-label for fracture repair in athletes. Read more

Posted on by Quinn Eastman in Immunology Leave a comment

Hope Clinic part of push to optimize HIV vaccine components

Ten years ago, the results of the RV144 trial– conducted in Thailand with the help of the US Army — re-energized the HIV vaccine field, which had been down in the dumps. It was the first vaccine clinical trial to ever demonstrate any efficacy in preventing HIV. The Hope Clinic of Emory Vaccine Center has been involved in efforts to build on the RV144 trial’s promising results. These early-stage studies have been optimizing the best vaccine components and techniques for larger vaccine efficacy trials, some of which are now underway.

Nadine Rouphael, interim director of the Hope Clinic, was first author on a recent paper in Journal of Clinical Investigation, reporting a multi-center study from the HIV Vaccine Trials Network. HVTN is headquartered at the Fred Hutchinson Cancer Research Center in Seattle and supported by the National Institute of Allergy and Infectious Diseases.

“Our study shows that there are tools available to us now to improve on the immunogenicity seen in RV144, which may lead to better efficacy in future field trials,” Rouphael says. (See statement on the HVTN 105 study here.) Read more

Posted on by Quinn Eastman in Immunology Leave a comment

B cells off the rails early in lupus

New research on the autoimmune disease systemic lupus erythematosus (SLE) provides hints to the origins of the puzzling disorder. The results are published in Nature Immunology.

In people with SLE, their B cells – part of the immune system – are abnormally activated. That makes them produce antibodies that react against their own tissues, causing a variety of symptoms, such as fatigue, joint pain, skin rashes and kidney problems.

Scientists at Emory University School of Medicine could discern that in people with SLE, signals driving expansion and activation are present at an earlier stage of B cell differentiation than previously appreciated. They identified patterns of gene activity that could be used as biomarkers for disease development.

Activation can be observed at an early stage of B cell differentiation: resting naive cells (pink ellipse). Adapted from Jenks et al Immunity (2018).

“Our data indicate a disease signature across all cell subsets, and importantly on mature resting B cells, suggesting that such cells may have been exposed to disease-inducing signals,” the authors write.

The paper reflects a collaboration between the laboratories of Jeremy Boss, PhD, chairman of microbiology and immunology, and Ignacio (Iñaki) Sanz, MD, head of the division of rheumatology in the Department of Medicine. Sanz, recipient of the 2019 Lupus Insight Prize from the Lupus Research Alliance, is director of the Lowance Center for Human Immunology and a Georgia Research Alliance Eminent Scholar. The first author is Christopher Scharer, PhD, assistant professor of microbiology and immunology.

The researchers studied blood samples from 9 African American women with SLE and 12 healthy controls. They first sorted the B cells into subsets, and then looked at the DNA in the women’s B cells, analyzing the patterns of gene activity. Sanz’s team had previously observed that people with SLE have an expansion of “activated naïve” and DN2 B cells, especially during flares, periods when their symptoms are worse. Read more

Posted on by Quinn Eastman in Immunology Leave a comment

Take heart, Goldilocks — and get more sleep

Sleeping too little or too much increases the risk of cardiovascular events and death in those with coronary artery disease, according to a new paper from Emory Clinical Cardiovascular Research Institute.

Others have observed a similar U-shaped risk curve in the general population, with respect to sleep duration. The new study, published in American Journal of Cardiology, extends the finding to people who were being evaluated for coronary artery disease.

Arshed Quyyumi, MD and colleagues analyzed data from a registry of 2846 patients undergoing cardiac catheterization at Emory. The “sweet spot” appeared to be those who report sleeping between 6.5 and 7.5 hours per night.

39 percent of patients with coronary artery disease reported that they slept fewer than 6.5 hours per night, and 35 percent slept longer than 7.5 hours. For the next few years, both groups had higher risks of all-cause mortality: elevated risk of 45 percent and 41 percent, respectively. Patients were followed for an average of 2.8 years.

The extreme ends of sleep duration both had even higher risk: people who reported less than 4.5 hours per day had almost double mortality risk (96 percent), and those more than 8.5 hours had 84 percent higher mortality risk.

Patients with short sleep durations also had higher cardiovascular mortality (48 percent), but adjusting for cardiovascular risk factors attenuated the association between long sleep duration and CV risk.

A detailed assessment of someone’s sleep can require PSG (polysomnography). In this study,  researchers were able to get information by simply asking about sleep duration.

The participants in the Emory study were simply asked: “How many hours of sleep do you usually get each night (or when you usually sleep)?” This question may not always be answered accurately, since time in bed isn’t necessarily time asleep. Still, the broad strokes show that the sleep-CV health relationship is robust.

“What is most stunning to me are that these data were collected from cardiac patients about to undergo an invasive procedure, who still reported an aspect of their sleep that was meaningful and predictive of future survival,” says Donald Bliwise, PhD, a specialist in sleep and aging research who is a co-author on the Emory study. “Often, epidemiologic studies collect data far away from a clinic setting, where anxiety is less and estimations may be sharper. We have here in this clinical study beautiful evidence that estimates made ‘from the gurney’ may be just as meaningful as those collected in the field.”

Quyyumi says if patients with heart disease are sleeping poorly, it’s important to recognize that they are at higher risk and counsel them regarding getting more sleep, as well as factors that can disrupt sleep, such as caffeine, alcohol and looking at screens late in the day.

More specific treatments may depend what is interfering with high-quality sleep in a given patient. Several conditions can lead to difficulty sleeping, such as sleep apnea, restless leg syndrome, as well as depression, all of which have been linked with heart disease. Physiologically, several mechanisms are probably exerting their effects, such as weakening circadian rhythms and sleep fragmentation with aging, and obesity/metabolic syndrome driving inflammation. Read more

Posted on by Quinn Eastman in Heart Leave a comment

Predict the future of critical care in #STATMadness

Emory is participating in STAT Madness, a “March Madness” style bracket competition featuring biomedical research advances instead of basketball teams. Universities or research institutes nominate their champions, research papers that were published the previous year. It’s like “Battle of the Bands.” Whoever gets the loudest — or most numerous — cheers wins.

Please check out all 64 entries, follow the 2019 STAT Madness bracket and vote here:
https://www.statnews.com/feature/stat-madness/bracket/

Emory’s entry for 2019:
It’s like the “precogs” who predict crime in the movie Minority Report, but for sepsis, the deadly response to infection. Shamim Nemati and colleagues have been exploring ways to analyze vital signs in ICU patients and predict sepsis, hours before clinical staff might otherwise notice.

As landmark clinical studies have documented, every hour of delay in giving someone with sepsis antibiotics increases their risk of mortality. So detecting sepsis as early as possible could save thousands of lives. Many hospitals have developed “sniffer” systems that monitor patients for sepsis, but this algorithm tries to spot problems way before they become apparent.

As published in 2018 in Critical Care Medicine, the algorithm can predict sepsis onset—with some false alarms—four, eight, even 12 hours ahead of time. No algorithm is going to be perfect, but it was better than any other previous sepsis predictor. The technology is headed for additional testing and evaluation at several medical centers, as part of a project supported by the federal Biomedical Advanced Research and Development Authority (BARDA).

You can fill out a whole bracket or you can just vote for Emory. The contest will last several rounds. The first round began on Monday, March 4, and lasts until the end of the week. Before 10 am Eastern time Monday morning, there were already more than 5,000 brackets entered!

If Emory advances, then people will be able to continue voting for us starting on Friday. Emory’s first opponent is a regional rival, Vanderbilt University School of Medicine. We are on the upper left side of the bracket.

STAT News is a Boston-based news organization covering biomedical research, pharma and biotech. If you feel like it, please share on social media using the hashtag #statmadness.

Posted on by Quinn Eastman in Uncategorized Leave a comment