2B4: potential immune target for sepsis survival

Emory immunologists have identified a potential target for treatments aimed at reducing mortality in sepsis, an often deadly reaction to Read more

EHR data superior for studying sepsis

Analysis of EHR data says sepsis rates and mortality have been holding steady, contrary to what is suggested by after-the-fact Read more

New pediatric digestive/liver disease gene identified by international team

A multinational team of researchers describes a newly identified cause of congenital diarrhea and liver disease in Read more

circulating progenitor cells

Emory clinical research highlights for #AHA16

Clinical research presentations at 2016 American Heart Association Scientific Sessions: telomeres + circulating progenitor cells, food deserts, and troponin as risk marker for atrial fibrillation.

 

Telomere Shortening, Regenerative Capacity, and Cardiovascular Outcomes Nov. 13, 4:45 pm, Room 346-347

Aging, in general, depletes our bodies’ regenerative capacities. Arshed Quyyumi, MD and colleagues at Emory Clinical Cardiovascular Research Institute have shown how circulating progenitor cells or CPCs, which regenerate blood vessels and correlate with outcomes in cardiovascular disease, are a finite resource.

Working with Quyyumi, research fellow Muhammad Hammadah, MD is presenting data on how telomere length interacts with the levels of CPCs, in a study of mental stress ischemia in 566 patients with stable coronary artery disease. Telomeres tend to shorten with ageing and cellular stress, and their length has been a widely studied biomarker.

Hammadah concludes that low leukocyte telomere length is associated with decreased regenerative capacity, independently of age and cardiovascular risk factors. However, telomere length and CPC levels are independent and additive predictors of adverse cardiovascular outcomes (such as death, heart attack, stroke, or hospitalization for heart failure), he finds. Hammadah is a finalist for the Elizabeth Barrett-Connor Research Award for Young Investigators in Training. Read more

Posted on by Quinn Eastman in Heart Leave a comment

Aging, CVD risk factors and progenitor cells

Cardiologists Ibhar Al Mheid, Arshed Quyyumi and colleagues from Emory’s Clinical Cardiovascular Research Institute recently published a paper that weaves together insights from past research on circulating progenitor cells. They tease apart the influences of age and cardiovascular disease (CVD) risk factors on these cells, whose regenerative capacity has made them the target of much investigation. From this research, one can infer that the circulatory system has a limited regenerative capacity, and stress upon the system earlier in life depletes it later.

Circulating progenitor cells are rare cells in the blood that can become white or red blood cells, as well as endothelial cells, which line blood vessels and repair them when damaged by cardiovascular disease. Quyyumi and his colleagues have sought to deliver progenitor cells, derived from the patient’s own bone marrow, to the heart – or less invasively, spur them out of the bone marrow with drugs. Read more

Posted on by Quinn Eastman in Heart Leave a comment