Circadian rhythms go both ways: in and from retina

Removal of Bmal1 accelerates the deterioration of vision that comes with Read more

Genomics plus human intelligence

The power of gene sequencing to solve puzzles when combined with human Read more

'Master key' microRNA has links to both ASD and schizophrenia

Recent studies of complex brain disorders such as schizophrenia and autism spectrum disorder (ASD) have identified a few "master keys," risk genes that sit at the center of a network of genes important for brain function. Researchers at Emory and the Chinese Academy of Sciences have created mice partially lacking one of those master keys, called MIR-137, and have used them to identify an angle on potential treatments for ASD. The results were published this Read more

circulating progenitor cells

Racial disparities in a CV biomarker

Because circulating progenitor cells repair blood vessels, they are a measure of regenerative capacity in the cardiovascular system. Cardiologist Arshed Quyyumi, MD and his colleagues at Emory Clinical Cardiovascular Research Institute have intensively studied this cell type as a marker of vulnerability or resilience.

A recent paper from Quyyumi’s team in Circulation Research examines circulating progenitor cells (CPCs) through the lens of racial disparity. The authors find that African-Americans tend to have lower levels of this regenerative biomarker:

In a large well-characterized biracial cohort, we demonstrate that black participants had significantly lower CPC counts compared with whites, even after adjustment for differences in demographic factors and CVD risk factors. These results were validated in an independent cohort. Thus, on average, after adjustment for sex and other CVD risk factors, blacks have CPC levels that are ≈15% to 30% lower compared with whites, even in subjects free of risk factors. CPC levels decline with age, reaching on average half the levels at age 80 compared with age 20. We found that blacks have CPC counts equivalent to those in whites who are 14 years older. CPC levels are higher after AMI as a result of mobilization because of injury. We show for first time that blacks have 30% to 35% lower CPC mobilization in the setting of AMI.

This is a tricky area to study. How many socioeconomic and environmental factors go into the racial disparities of cardiovascular disease risk? Diet. Exercise. Geography, education, access to healthcare. Air pollution. Psychological stress and inflammation associated with discrimination. It is possible to view CPCs as summing up many of these influences, analogous to the way hemoglobin A1C measurements integrate someone’s blood sugar levels over time as a marker of diabetes. Read more

Posted on by Quinn Eastman in Heart Leave a comment

When circulating ambulances disappear

Someone driving around a city on a regular basis will see ambulances. At times they’re going somewhere fast; sometimes they’re just driving. What if, on a given day, fewer ambulances are visible?

One possible conclusion might be: the ambulances are away responding to a group of people who need help. This effect resembles what Arshed Quyyumi and colleagues from Emory Clinical Cardiovascular Research Institute observed in a recent paper, published in the Journal of the American Heart Association.

Arshed Quyyumi, MD

Quyyumi’s team looked at progenitor cells, which circulate in the blood and are attracted to sites of injury.  In a group of 356 patients with stable coronary artery disease, the researchers saw that some (31 percent) had “ExMI” – exercise-mediated myocardial ischemia. That means impairments in blood flow were visible via cardiac imaging under the stress of exercise. This is a relatively mild impairment; participants did not report chest pain. This paper emerges from the MIPS (Mental Stress Ischemia Prognosis) study, 2011-2014.

The ambulance-progenitor cell analogy isn’t perfect; exercise, generally a good thing, increases progenitor cell levels in the blood, says co-first author and cardiology fellow Muhammad Hammadah. The study supports the idea that patients with coronary artery disease may benefit from cardiac rehab programs, which drive the progenitor cells into the ischemic tissue, so they can contribute into vascular repair and regeneration. Read more

Posted on by Quinn Eastman in Heart Leave a comment

Emory clinical research highlights for #AHA16

Clinical research presentations at 2016 American Heart Association Scientific Sessions: telomeres + circulating progenitor cells, food deserts, and troponin as risk marker for atrial fibrillation.

 

Telomere Shortening, Regenerative Capacity, and Cardiovascular Outcomes Nov. 13, 4:45 pm, Room 346-347

Aging, in general, depletes our bodies’ regenerative capacities. Arshed Quyyumi, MD and colleagues at Emory Clinical Cardiovascular Research Institute have shown how circulating progenitor cells or CPCs, which regenerate blood vessels and correlate with outcomes in cardiovascular disease, are a finite resource.

Working with Quyyumi, research fellow Muhammad Hammadah, MD is presenting data on how telomere length interacts with the levels of CPCs, in a study of mental stress ischemia in 566 patients with stable coronary artery disease. Telomeres tend to shorten with ageing and cellular stress, and their length has been a widely studied biomarker.

Hammadah concludes that low leukocyte telomere length is associated with decreased regenerative capacity, independently of age and cardiovascular risk factors. However, telomere length and CPC levels are independent and additive predictors of adverse cardiovascular outcomes (such as death, heart attack, stroke, or hospitalization for heart failure), he finds. Hammadah is a finalist for the Elizabeth Barrett-Connor Research Award for Young Investigators in Training. Read more

Posted on by Quinn Eastman in Heart Leave a comment

Aging, CVD risk factors and progenitor cells

Cardiologists Ibhar Al Mheid, Arshed Quyyumi and colleagues from Emory’s Clinical Cardiovascular Research Institute recently published a paper that weaves together insights from past research on circulating progenitor cells. They tease apart the influences of age and cardiovascular disease (CVD) risk factors on these cells, whose regenerative capacity has made them the target of much investigation. From this research, one can infer that the circulatory system has a limited regenerative capacity, and stress upon the system earlier in life depletes it later.

Circulating progenitor cells are rare cells in the blood that can become white or red blood cells, as well as endothelial cells, which line blood vessels and repair them when damaged by cardiovascular disease. Quyyumi and his colleagues have sought to deliver progenitor cells, derived from the patient’s own bone marrow, to the heart – or less invasively, spur them out of the bone marrow with drugs. Read more

Posted on by Quinn Eastman in Heart Leave a comment