Beyond the amyloid hypothesis: proteins that indicate cognitive stability

If you’re wondering where Alzheimer’s research might be headed after the latest large-scale failure of a clinical trial based on the “amyloid hypothesis,” check this Read more

Mother's milk is OK, even for the in-between babies

“Stop feeding him milk right away – just to be safe” was not what a new mother wanted to hear. The call came several days after Tamara Caspary gave birth to fraternal twins, a boy and a girl. She and husband David Katz were in the period of wonder and panic, both recovering and figuring out how to care for them. “A nurse called to ask how my son was doing,” says Caspary, a developmental Read more

Focus on mitochondria in schizophrenia research

Despite advances in genomics in recent years, schizophrenia remains one of the most complex challenges of both genetics and neuroscience. The chromosomal abnormality 22q11 deletion syndrome, also known as DiGeorge syndrome, offers a way in, since it is one of the strongest genetic risk factors for schizophrenia. Out of dozens of genes within the 22q11 deletion, several encode proteins found in mitochondria. A team of Emory scientists, led by cell biologist Victor Faundez, recently analyzed Read more

Heval Mohamed Kelli

Emory clinical research highlights for #AHA16

Clinical research presentations at 2016 American Heart Association Scientific Sessions: telomeres + circulating progenitor cells, food deserts, and troponin as risk marker for atrial fibrillation.

 

Telomere Shortening, Regenerative Capacity, and Cardiovascular Outcomes Nov. 13, 4:45 pm, Room 346-347

Aging, in general, depletes our bodies’ regenerative capacities. Arshed Quyyumi, MD and colleagues at Emory Clinical Cardiovascular Research Institute have shown how circulating progenitor cells or CPCs, which regenerate blood vessels and correlate with outcomes in cardiovascular disease, are a finite resource.

Working with Quyyumi, research fellow Muhammad Hammadah, MD is presenting data on how telomere length interacts with the levels of CPCs, in a study of mental stress ischemia in 566 patients with stable coronary artery disease. Telomeres tend to shorten with ageing and cellular stress, and their length has been a widely studied biomarker.

Hammadah concludes that low leukocyte telomere length is associated with decreased regenerative capacity, independently of age and cardiovascular risk factors. However, telomere length and CPC levels are independent and additive predictors of adverse cardiovascular outcomes (such as death, heart attack, stroke, or hospitalization for heart failure), he finds. Hammadah is a finalist for the Elizabeth Barrett-Connor Research Award for Young Investigators in Training. Read more

Posted on by Quinn Eastman in Heart Leave a comment