Two items relevant to long COVID

One of the tricky issues in studying in long COVID is: how widely do researchers cast their net? Initial reports acknowledged that people who were hospitalized and in intensive care may take a while to get back on their feet. But the number of people who had SARS-CoV-2 infections and were NOT hospitalized, yet experienced lingering symptoms, may be greater. A recent report from the United Kingdom, published in PLOS Medicine, studied more than Read more

All your environmental chemicals belong in the exposome

Emory team wanted to develop a standard low-volume approach that would avoid multiple processing steps, which can lead to loss of material, variable recovery, and the potential for Read more

Signature of success for an HIV vaccine?

Efforts to produce a vaccine against HIV/AIDS have been sustained for more than a decade by a single, modest success: the RV144 clinical trial in Thailand, whose results were reported in 2009. Now Emory, Harvard and Case Western Reserve scientists have identified a gene activity signature that may explain why the vaccine regimen in the RV144 study was protective in some individuals, while other HIV vaccine studies were not successful. The researchers think that this signature, Read more

amyloid hypothesis

Beyond the amyloid hypothesis: proteins that indicate cognitive stability

If you’re wondering where Alzheimer’s research might be headed after the latest large-scale failure of a clinical trial based on the “amyloid hypothesis,” check this out.

Plaques. Tangles. Clumps. These are all pathological signs of neurodegenerative diseases that scientists can see under the microscope. But they don’t explain most of the broader trends of cognitive resilience or decline in aging individuals. What’s missing?

A recent proteomics analysis in Nature Communications from Emory researchers identifies key proteins connected with cognitive trajectory – meaning the rate at which someone starts to decline and develop mild cognitive impairment or dementia.

This paper fits in with the multi-year push for “unbiased” Alzheimer’s/aging research at Emory. The lead and senior authors are Aliza and Thomas Wingo, with proteomics from biochemist Nick Seyfried and company.

The proteins the Emory team spotlights are not the usual suspects that scientists have been grinding on for years in the Alzheimer’s field, such as beta-amyloid and tau. They’re proteins connected with cellular energy factories (mitochondria) or with synapses, the connections between brain cells.

“Our most notable finding is that proteins involving mitochondrial activities or synaptic functions had increased abundance among individuals with cognitive stability regardless of the burden of β-amyloid plaques or neurofibrillary tangles,” the authors write. “Taken together, our findings and others highlight that mitochondrial activities would be a fruitful research target for early prevention of cognitive decline and enhancement of cognitive stability.” Read more

Posted on by Quinn Eastman in Neuro Leave a comment

‘Unbiased’ approaches to Alzheimer’s

In recent news stories about Alzheimer’s disease research, we noticed a word popping up: unbiased. Allan Levey, chair of Emory’s neurology department and head of Emory’s Alzheimer’s Disease Research Center, likes to use that word too. It’s key to a “back to the drawing board” shift taking place in the Alzheimer’s field.

Last week’s announcement of a link between herpes viruses and Alzheimer’s, which Emory researchers contributed to, was part of this shift. Keep in mind: the idea that viral infection contributes to Alzheimer’s has been around a long time, and the Neuron paper doesn’t nail down causality.  

Still, here’s an example quote from National Institute on Aging director Richard Hodes: “This is the first study to provide strong evidence based on unbiased approaches and large data sets that lends support to this line of inquiry.”

What is the bias that needs to be wrung out of the science? The “amyloid hypothesis” has dominated drug development for the last several years. Amyloid is a main constituent of the plaques that appear in the brains of people with Alzheimer’s, so treatments that counteract amyloid’s accumulation should help, right? Unfortunately, antibodies against amyloid or inhibitors of enzymes that process it generally haven’t worked out in big clinical trials, although the possibility remains that they weren’t introduced early enough to have a decent effect. Read more

Posted on by Quinn Eastman in Neuro Leave a comment