Precision medicine with multiple myeloma

“Precision medicine” is an anti-cancer treatment strategy in which doctors use genetic or other tests to identify vulnerabilities in an individual’s cancer subtype. Winship Cancer Institute researchers have been figuring out how to apply this strategy to multiple myeloma, with respect to one promising drug called venetoclax, in a way that can benefit the most patients. Known commercially as Venclexta, venetoclax is already FDA-approved for some forms of leukemia and lymphoma. Researchers had observed that multiple Read more

Promiscuous protein droplets regulate immune gene activity

Biochemists at Emory are achieving insights into how an important regulator of the immune system switches its function, based on its orientation and local environment. New research demonstrates that the glucocorticoid receptor (or GR) forms droplets or “condensates” that change form, depending on its available partners. The inside of a cell is like a crowded nightclub or party, with enzymes and other proteins searching out prospective partners. The GR is particularly well-connected and promiscuous, and Read more

Neutrophils flood lungs in severe COVID-19

In the lungs of severe COVID-19 patients, neutrophils camp out and release inflammatory cytokines and tissue-damaging Read more

Thomas Wingo

Emory researchers SNARE new Alzheimer’s targets

Diving deep into Alzheimer’s data sets, a recent Emory Brain Health Center paper in Nature Genetics spots several new potential therapeutic targets, only one of which had been previous linked to Alzheimer’s. The Emory analysis was highlighted by the Alzheimer’s site Alzforum, gathering several positive comments from other researchers.

Thomas Wingo, MD

Lead author Thomas Wingo and his team — wife Aliza Wingo is first author – identified the targets by taking a new approach: tracing connections between proteins that are altered in abundance in patients’ brains and risk genes identified through genome-wide association studies.

The list of 11 genes/proteins named as “consistent with being causal” may be contributing to AD pathogenesis through various mechanisms: vesicular trafficking, inflammation, lipid metabolism and hypertension. We asked Wingo which ones he wanted to highlight, and he provided this comment:

“The most interesting genes, to me, are the ones involved in the SNARE complex (in the paper, STX4 and STX6) and the others involved in vesicular trafficking. There is already a deep body of literature that describe a role for some of these components in AD, and I’m hopeful providing specific targets might be useful to those studies.”

A simplistic way to look at the mechanism of Alzheimer’s disease is: proteins build up in the brain, in the form of amyloid plaques and neurofibrillary tangles. The functions of neurons and other brain cells are thought to be impaired by bits of beta-amyloid floating around.

Inside neurons, the SNARE complex is the core of the machinery that pushes vesicles to fuse with the cell membrane. Neurons communicate with each other by having vesicles inside the cell – bags full of neurotransmitters – release their contents. They’re like tiny packets of pepper or other spices that make the neuron next door sneeze. In Alzheimer’s, amyloid oligomers have been reported to block SNARE complex assembly, which may explain aspects of impaired cognition.

Posted on by Quinn Eastman in Neuro Leave a comment

Beyond the amyloid hypothesis: proteins that indicate cognitive stability

If you’re wondering where Alzheimer’s research might be headed after the latest large-scale failure of a clinical trial based on the “amyloid hypothesis,” check this out.

Plaques. Tangles. Clumps. These are all pathological signs of neurodegenerative diseases that scientists can see under the microscope. But they don’t explain most of the broader trends of cognitive resilience or decline in aging individuals. What’s missing?

A recent proteomics analysis in Nature Communications from Emory researchers identifies key proteins connected with cognitive trajectory – meaning the rate at which someone starts to decline and develop mild cognitive impairment or dementia.

This paper fits in with the multi-year push for “unbiased” Alzheimer’s/aging research at Emory. The lead and senior authors are Aliza and Thomas Wingo, with proteomics from biochemist Nick Seyfried and company.

The proteins the Emory team spotlights are not the usual suspects that scientists have been grinding on for years in the Alzheimer’s field, such as beta-amyloid and tau. They’re proteins connected with cellular energy factories (mitochondria) or with synapses, the connections between brain cells.

“Our most notable finding is that proteins involving mitochondrial activities or synaptic functions had increased abundance among individuals with cognitive stability regardless of the burden of β-amyloid plaques or neurofibrillary tangles,” the authors write. “Taken together, our findings and others highlight that mitochondrial activities would be a fruitful research target for early prevention of cognitive decline and enhancement of cognitive stability.” Read more

Posted on by Quinn Eastman in Neuro Leave a comment