Can blood from coronavirus survivors save the lives of others?

Donated blood from COVID-19 survivors could be an effective treatment in helping others fight the illness – and should be tested more broadly to see if it can “change the course of this pandemic,” two Emory pathologists say. The idea of using a component of survivors’ donated blood, or “convalescent plasma,” is that antibodies from patients who have recovered can be used in other people to help them defend against coronavirus. Emory pathologists John Roback, MD, Read more

Targeting metastasis through metabolism

Research from Adam Marcus’ and Mala Shanmugam’s labs was published Tuesday in Nature Communications – months after we wrote an article for Winship Cancer Institute’s magazine about it. So here it is again! At your last visit to the dentist, you may have been given a mouth rinse with the antiseptic chlorhexidine. Available over the counter, chlorhexidine is also washed over the skin to prepare someone for surgery. Winship researchers are now looking at chlorhexidine Read more

Immunotherapy combo achieves reservoir shrinkage in HIV model

Stimulating immune cells with two cancer immunotherapies together can shrink the size of the viral “reservoir” in SIV-infected nonhuman primates treated with antiviral drugs. Important implications for the quest to cure HIV, because reservoir shrinkage has not been achieved consistently Read more

pacemakers

A spoonful of sugar helps infection detection

Congratulations to Kiyoko Takemiya, a postdoctoral fellow in Emory’s Division of Cardiology, working with W. Robert Taylor. At the recent American College of Cardiology meeting in Washington DC, she won first place in the competition for an ACC Foundation/ Herman K. Gold Young Investigators Award in Molecular and Cellular Cardiology.

The title of her research presentation was: A Novel Imaging Probe for the Detection of Subclinical Bacterial Infections Involving Cardiac Devices.

Takemiya, Taylor, and their colleagues (including Mark Goodman and Niren Murthy, formerly at Georgia Tech and now at UC Berkeley) developed a fluorescent probe that allows the detection of small levels of bacteria on cardiac devices. The probe was tested in rats, some of which had relatively mild local S. aureus infections. The fluorescent probe (PET is also under investigation) makes use of the properties of maltohexaose, a sugar that is taken up by bacteria but not mammalian cells.

Infection rates for implantable cardiac devices such as pacemakers have been rising, according to a 2012 paper in NEJM.

Posted on by Quinn Eastman in Heart Leave a comment