Mother's milk is OK, even for the in-between babies

“Stop feeding him milk right away – just to be safe” was not what a new mother wanted to hear. The call came several days after Tamara Caspary gave birth to fraternal twins, a boy and a girl. She and husband David Katz were in the period of wonder and panic, both recovering and figuring out how to care for them. “A nurse called to ask how my son was doing,” says Caspary, a developmental Read more

Focus on mitochondria in schizophrenia research

Despite advances in genomics in recent years, schizophrenia remains one of the most complex challenges of both genetics and neuroscience. The chromosomal abnormality 22q11 deletion syndrome, also known as DiGeorge syndrome, offers a way in, since it is one of the strongest genetic risk factors for schizophrenia. Out of dozens of genes within the 22q11 deletion, several encode proteins found in mitochondria. A team of Emory scientists, led by cell biologist Victor Faundez, recently analyzed Read more

Fetal alcohol cardiac toxicity - in a dish

Alcohol-induced cardiac toxicity is usually studied in animal models; a cell-culture based approach could make it easier to study possible interventions more Read more

Neale Weitzmann

Bone-strengthening particles stimulate autophagy

Neale Weitzmann and George Beck have been publishing a series of papers describing how silica nanoparticles can increase bone mineral density in animals. Their findings could someday form the basis for a treatment for osteoporosis.

In 2012, we posted an article and video on this topic. We wanted to call attention to a few of the team’s recent papers, one of which probes the mechanism for a remarkable phenomenon: how can very fine silica particles stimulate bone formation?

The particles’ properties seem to depend on their size: 50 nanometers wide – smaller than a HIV or influenza vision. In a 2014 ACS Nano paper, Beck, Weitzmann and postdoc Shin-Woo Ha show that the particles interact with particular proteins involved in the process of autophagy, a process of “self digestion” induced by stress.

“These studies suggest that it is not the material per se that stimulates autophagy but rather size or shape,” they write. Read more

Posted on by Quinn Eastman in Uncategorized Leave a comment

Strengthening bone with silica nanoparticles

Tiny particles of silicon dioxide – essentially, extremely fine sand — can strengthen bones when introduced into animals, researchers at Emory University School of Medicine have discovered.

The particles stimulate the generation of bone-forming cells and inhibit other cells that break down bone. The findings could someday form the basis for an alternative treatment for osteoporosis.

The results were published recently in the journal Nanomedicine.

The paper represents a collaboration between the laboratories of George Beck and Neale Weitzmann, both in the Division of Endocrinology, Metabolism and Lipids. The project started when Jin-Kyu Lee, now at Seoul National University, came to Beck’s lab with silica nanoparticles he had developed that contained fluorescent dyes. This allowed researchers to track the particles within the body and within cells.

In the laboratory, the nanoparticles stimulate the generation of bone-forming osteoblasts and inhibit the maturation of bone-remodeling osteoclasts. Beck says that the particles’ properties seem to depend on their size (50 nanometers wide) and shape, because larger particles don’t have the same effects. The nanoparticles appear to work by being taken up by the cells and then by inhibiting NF-kB, a molecule that controls inflammation.

Silicon is a trace element in the diet of most people. Scientists have known for several years that dietary silicon is linked to strong bones, but how silicon influences bone growth has remained unclear: it could become physically incorporated into bone, or it could provide signals to the cells that make up bone. To be sure, silica nanoparticles may be acting in a way that is different than dietary silicon.

The particles’ ability to stimulate osteoblasts distinguish them from bisphosphonates, the most common drugs now used to treat osteoporosis, Beck says. Bisphosphonates only inhibit bone breakdown and do not stimulate bone formation.

The Emory team has found that injecting silica nanoparticles can increase the bone density of young mice by roughly 15 percent over six weeks, augmenting the increases coming from adolescent growth.

To test the particles’ potential for use with humans, the researchers are examining whether injection is the best way to deliver the nanoparticles, and whether long-term toxicity is an issue. Inhalation of larger particles of silica dust, an occupational hazard for miners and construction workers, can result in the lung disease silicosis. However, silicosis arises because the lungs can’t absorb and remove the larger dust particles. Since cells clearly can take up the nanoparticles (see video), it is possible that they will not induce the body to respond similarly.

Emory has applied for patents on this technology. A presentation by Emory’s Office of Technology Transfer is available here.

Posted on by Quinn Eastman in Uncategorized Leave a comment