Tracing the start of COVID-19 in GA

At a time when COVID-19 appears to be receding in much of Georgia, it’s worth revisiting the start of the pandemic in early 2020. Emory virologist Anne Piantadosi and colleagues have a paper in Viral Evolution on the earliest SARS-CoV-2 genetic sequences detected in Georgia. Analyzing relationships between those virus sequences and samples from other states and countries can give us an idea about where the first COVID-19 infections in Georgia came from. We can draw Read more

Reddit as window into opioid withdrawal strategies

Drug abuse researchers are using the social media site Reddit as a window into the experiences of people living with opioid addiction. Abeed Sarker in Emory's Department of Biomedical Informatics has a paper in Clinical Toxicology focusing on the phenomenon of “precipitated withdrawal,” in collaboration with emergency medicine specialists from Penn, Rutgers and Mt Sinai. Precipitated withdrawal is a more intense form of withdrawal that can occur when someone who was using opioids starts medication-assisted treatment Read more

CROI: HIV cure report and ongoing research

The big news out of CROI (Conference on Retroviruses and Opportunistic Infections) was a report of a third person being cured of HIV infection, this time using umbilical cord blood for a hematopoetic stem cell transplant. Emory’s Carlos del Rio gave a nice overview of the achievement for NPR this morning. As del Rio explains, the field of HIV cure research took off over the last decade after Timothy Brown, known as “the Berlin patient,” Read more

division of endocrinology

Strengthening bone with silica nanoparticles

Tiny particles of silicon dioxide – essentially, extremely fine sand — can strengthen bones when introduced into animals, researchers at Emory University School of Medicine have discovered.

The particles stimulate the generation of bone-forming cells and inhibit other cells that break down bone. The findings could someday form the basis for an alternative treatment for osteoporosis.

The results were published recently in the journal Nanomedicine.

The paper represents a collaboration between the laboratories of George Beck and Neale Weitzmann, both in the Division of Endocrinology, Metabolism and Lipids. The project started when Jin-Kyu Lee, now at Seoul National University, came to Beck’s lab with silica nanoparticles he had developed that contained fluorescent dyes. This allowed researchers to track the particles within the body and within cells.

In the laboratory, the nanoparticles stimulate the generation of bone-forming osteoblasts and inhibit the maturation of bone-remodeling osteoclasts. Beck says that the particles’ properties seem to depend on their size (50 nanometers wide) and shape, because larger particles don’t have the same effects. The nanoparticles appear to work by being taken up by the cells and then by inhibiting NF-kB, a molecule that controls inflammation.

Silicon is a trace element in the diet of most people. Scientists have known for several years that dietary silicon is linked to strong bones, but how silicon influences bone growth has remained unclear: it could become physically incorporated into bone, or it could provide signals to the cells that make up bone. To be sure, silica nanoparticles may be acting in a way that is different than dietary silicon.

The particles’ ability to stimulate osteoblasts distinguish them from bisphosphonates, the most common drugs now used to treat osteoporosis, Beck says. Bisphosphonates only inhibit bone breakdown and do not stimulate bone formation.

The Emory team has found that injecting silica nanoparticles can increase the bone density of young mice by roughly 15 percent over six weeks, augmenting the increases coming from adolescent growth.

To test the particles’ potential for use with humans, the researchers are examining whether injection is the best way to deliver the nanoparticles, and whether long-term toxicity is an issue. Inhalation of larger particles of silica dust, an occupational hazard for miners and construction workers, can result in the lung disease silicosis. However, silicosis arises because the lungs can’t absorb and remove the larger dust particles. Since cells clearly can take up the nanoparticles (see video), it is possible that they will not induce the body to respond similarly.

Emory has applied for patents on this technology. A presentation by Emory’s Office of Technology Transfer is available here.

Posted on by Quinn Eastman in Uncategorized Leave a comment