Big data with heart, for psychiatric disorders

Heart rate variability can be used to monitor psychiatric Read more

Unlocking schizophrenia biology via genetics

A genetic risk factor for schizophrenia could be a key to unlock the biology of the complex Read more

Brain circuitry linked to social connection and desire to cuddle

Just like humans, prairie voles are capable of consistently forming social bonds with mating partners, a rare trait in the animal Read more

Department of Hematology and Medical Oncology

Nutty stimulant revealed as anticancer tool

Arecoline — the stimulant component of areca nuts — has anticancer properties, researchers at Winship Cancer Institute of Emory University have discovered. The findings were published Thursday, November 17 in Molecular Cell.

areca-nut-and-arecoline

Areca nut and chemical structure of arecoline. From Wikimedia.

Areca nuts are chewed for their stimulant effects in many Asian countries, and evidence links the practice to the development of oral and esophageal cancer. Analogous to nicotine, arecoline was identified as an inhibitor of the enzyme ACAT1, which contributes to the metabolism-distorting Warburg effect in cancer cells.

Observers of health news have complained that coffee, as a widely cited example, is implicated in causing cancer one week and absolved the next. Arecoline is not another instance of the same trend, stresses senior author Jing Chen, PhD, professor of hematology and medical oncology at Emory University School of Medicine and Winship Cancer Institute.

“This is just a proof of principle, showing that ACAT1 is a good anticancer target,” Chen says. “We view arecoline as a lead to other compounds that could be more potent and selective.”

Chen says that arecoline could be compared to arsenic, a form of which is used as a treatment for acute promyelocytic leukemia, but is also linked to several types of cancer. Plus, arecoline’s cancer-promoting effects may be limited if it is not delivered or absorbed orally, he says. When arecoline first arose in a chemical screen, Chen says: “It sounded like a carcinogen to me. But it all depends on the dose and how it is taken into the body.” Read more

Posted on by Quinn Eastman in Cancer Leave a comment

Graft vs host? Target the aurora

 

Graft-vs-host disease is a common and potentially deadly complication following bone marrow transplants, in which immune cells from the donated bone marrow attack the recipient’s body.

Winship Cancer Institute’s Ned Waller and researchers from Children’s Healthcare of Atlanta and Yerkes National Primate Research Center were part of a recent Science Translational Medicine paper that draws a bright red circle around aurora kinase A as a likely drug target in graft-vs-host disease.

Aurora kinases are enzymes that control mitosis, the process of cell division, and were first discovered in the 1990s in yeast, flies and frogs. Now drugs that inhibit aurora kinase A are in clinical trials for several types of cancer, and clinicans are planning to examine whether the same type of drugs could help with graft-vs-host disease.

Leslie Kean, a pediatric cancer specialist at Seattle Children’s who was at Emory until 2013, is the senior author of the STM paper. Seattle Childrens’ press release says that Kean wears a bracelet around her badge from a pediatric patient cured of leukemia one year ago, but who is still in the hospital due to complications from graft-vs-host. Read more

Posted on by Quinn Eastman in Cancer, Immunology Leave a comment

Anticancer drug strategy: making cells choke on copper

What do cancer cells have in common with horseshoe crabs and Mr. Spock from Star Trek?

They all depend upon copper. Horseshoe crabs have blue blood because they use copper to transport oxygen in their blood instead of iron (hemocyanin vs hemoglobin). Vulcans’ blood was supposed to be green, for the same reason.

Horseshoe Crab (Limulus polyphemus)

Horseshoe crabs and Vulcans use copper to transport oxygen in their blood. Cancer cells seem to need the metal more than other cells.

To be sure, all our cells need copper. Many human enzymes use the metal to catalyze important reactions, but cancer cells seem to need it more than healthy cells. Manipulating the body’s flow of copper is emerging as an anticancer drug strategy.

A team of scientists from University of Chicago, Emory and Shanghai have developed compounds that interfere with copper transport inside cells. These compounds inhibit the growth of several types of cancer cells, with minimal effects on the growth of non-cancerous cells, the researchers report in Nature Chemistry.

“We’re taking a tactic that’s different from other approaches. These compounds actually cause copper to accumulate inside cells,” says co-senior author Jing Chen, PhD, professor of hematology and medical oncology at Emory University School of Medicine and Winship Cancer Institute. Read more

Posted on by Quinn Eastman in Cancer Leave a comment