Genomics plus human intelligence

The power of gene sequencing to solve puzzles when combined with human Read more

'Master key' microRNA has links to both ASD and schizophrenia

Recent studies of complex brain disorders such as schizophrenia and autism spectrum disorder (ASD) have identified a few "master keys," risk genes that sit at the center of a network of genes important for brain function. Researchers at Emory and the Chinese Academy of Sciences have created mice partially lacking one of those master keys, called MIR-137, and have used them to identify an angle on potential treatments for ASD. The results were published this Read more

Shape-shifting RNA regulates viral sensor

OAS senses double-stranded RNA: the form that viral genetic material often takes. Its regulator is also Read more

Cassandra Quave

Focus on antibiotic resistance at ASM Microbe 2018

We are excited that the ASM Microbe meeting will be at the Georgia World Congress Center from June 7 to June 11. If you are interested in antibiotic resistance, you can learn about how to detect it, how to (possibly) defeat it and how the bacteria fight back.

A host of Emory microbiologists are participating. In some cases, our scientists are presenting their unpublished data for discussion with their colleagues at other universities. Accordingly, we are not going to spill the beans on those results. However, please find below some examples of who’s talking and a bit of explanatory background. ASM Microbe abstracts are available online for posters, but not for some symposiums and plenary talks.

David Weiss labKlebsiella

Graduate student Jessie Wozniak is presenting her research on an isolate of Klebsiella that combines alarming properties. She will describe how the bacterial colonies behave (unappetizingly) like stretchy melted cheese in a “string test.”

June 9, 11 am to 1 pm, June 11, 11 am to 1 pm

Christine Dunham – toxin-antitoxin/persistence

Graduate student Sarah Anderson presenting her poster at ASM Microbe. She discussed a genetic connection between virulence switch and antibiotic resistance.

Dunham, a structural biologist, is giving a plenary talk June 11 on toxin-antitoxin pairs, which play a role in regulating bacterial persistence, a dormant state that facilitates antibiotic resistance. Two past papers from her lab.

Phil Rather labAcinetobacter baumannii

Rather’s lab recently published a Nature Microbiology paper on A. baumannii’s virulence/opacity switch. This type of bacteria is known for hospital-associated infections and for wound infections in military personnel. Poster talk by graduate student Sarah Anderson June 8. Read more

Posted on by Quinn Eastman in Uncategorized Leave a comment

Rescuing existing antibiotics with adjuvants

One of the speakers at Thursday’s Antibiotic Resistance Center symposium, Gerald Wright from McMaster University, made the case for fighting antibiotic resistance by combining known antibiotics with non-antibiotic drugs that are used to treat other conditions, which he called adjuvants.

As an example, he cited this paper, in which his lab showed that loperamide, known commercially as the anti-diarrheal Immodium, can make bacteria sensitive to tetracycline-type antibiotics.

Wright said that other commercial drugs and compounds in pharmaceutical companies’ libraries could have similar synergistic effects when combined with existing antibiotics. Most drug-like compounds aimed at human physiology follow “Lipinski’s rule of five“, but the same rules don’t apply to bacteria, he said. What might be a more rewarding place to look for more anti-bacterial compounds? Natural products from fungi and plants, Wright proposed.

“I made a little fist-pump when he said that,” says Emory ethnobotanist Cassandra Quave, whose laboratory specializing in looking for anti-bacterial activities in medicinal plants.

Medical thnobotanist Cassandra Quave collecting plant specimens in Italy.

Medical ethnobotanist Cassandra Quave collecting plant specimens in Italy

Indeed, many of the points he made on strategies to overcome antibiotic resistance could apply to Quave’s approach. She and her colleagues have been investigating compounds that can disrupt biofilms, thus enhancing antibiotic activity. More at eScienceCommons and at her lab’s site.

Posted on by Quinn Eastman in Uncategorized Leave a comment