First (and massive) whole-genome study of IBD in African Americans

In African Americans, the genetic risk landscape for inflammatory bowel disease (IBD) is very different from that of people with European ancestry, according to results of the first whole-genome study of IBD in African Americans. The authors say that future clinical research on IBD needs to take ancestry into account. Findings of the multi-center study, which analyzed the whole genomes of more than 1,700 affected individuals with Crohn’s disease and ulcerative colitis and more than Read more

Emory researchers SNARE new Alzheimer’s targets

Diving deep into Alzheimer’s data sets, a recent Emory Brain Health Center paper in Nature Genetics spots several new potential therapeutic targets, only one of which had been previous linked to Alzheimer’s. The Emory analysis was highlighted by the Alzheimer’s site Alzforum, gathering several positive comments from other researchers. Thomas Wingo, MD Lead author Thomas Wingo and his team -- wife Aliza Wingo is first author – identified the targets by taking a new approach: tracing Read more

Amit Shah

Detecting heart failure via wearable devices

Cardiology researchers have been eagerly taking up consumer electronic devices that include pulse oximeters. Being able to conveniently measure the level of oxygen in someone’s blood is a useful tool, whether one is interested in sleep apnea or COVID-19.

The news that the new Apple Watch includes a pulse oximeter prompted Lab Land to check in with Amit Shah, an Emory cardiologist who has been experimenting with similar devices to discriminate patients with heart failure from those with other conditions.

Shah, together with Shamim Nemati, now at UCSD, and bioinformatics chair Gari Clifford recently published a pilot study on detecting heart failure using the Samsung Simband. The Simband was a prototype device that didn’t make it to the consumer market, but it carried sensors for optical detection of blood volume changes (photoplethysmography), like on the Apple Watch. 

Heart failure causes symptoms such as shortness of breath and leg swelling, but other conditions such as anemia or lung diseases can appear similarly. The idea was to help discriminate people who might need an examination by echocardiogram (cardiac ultrasound).

Read more

Posted on by Quinn Eastman in Uncategorized Leave a comment

Big data with heart, for psychiatric disorders

Imagine someone undergoing treatment by a psychiatrist. How do we know the treatment is really working or should be modified?

To assess whether the patient’s condition is objectively improving, the doctor could ask him or her to take home a heart rate monitor and wear it continuously for 24 hours. An app connected to the monitor could then track how much the patient’s heart rate varies over time and how much the patient moves.

Heart rate variability can be used to monitor psychiatric disorders

MD/PhD student Erik Reinertsen is the first author on two papers in Physiological Measurement advancing this approach, working under the supervision of Gari Clifford, interim chair of Emory’s Department of Biomedical Informatics.

Clifford’s team has been evaluating heart rate variability and activity as a tool for monitoring both PTSD (post-traumatic stress disorder) and schizophrenia. Clifford says his team’s research is expanding to look at treatment-resistant depression and other mental health issues.

For clinical applications, Clifford emphasizes that his plans focus on tracking disease severity for patients who are already diagnosed, rather than screening for new diagnoses. His team is involved in much larger studies in which heart rate data is being combined with physical activity data from smart watches, body patches, and clinical questionnaires, as well as other behavioral and exposure data collected through smartphone usage patterns.

Intuitively, heart rate variability makes sense for monitoring PTSD, because one of the core symptoms is hyperarousal, along with flashbacks and avoidance or numbness. However, it turns out that the time that provides the most information is when heart rate is lowest and study participants are most likely asleep, or at their lowest ebb during the night.

Home sleep tests generate a ton of information, which can be mined. This approach also fits into a trend for wearable medical technology, recently highlighted in STAT by Max Blau (subscription needed).

The research on PTSD monitoring grows out of work by cardiologists Amit Shah and Viola Vaccarino on heart rate variability in PTSD-discordant twin veterans (2013 Biological Psychiatry paper). Shah and Vaccarino had found that low frequency heart rate variability is much less (49 percent less) in the twin with PTSD. Genetics influences heart rate variability quite a bit, so studying twins allows those factors to be accounted for. Read more

Posted on by Quinn Eastman in Heart, Neuro Leave a comment