Mouse version of 3q29 deletion: insights into schizophrenia/ASD pathways

Emory researchers see investigating 3q29 deletion as a way of unraveling schizophrenia’s biological and genetic Read more

B cells off the rails early in lupus

Emory scientists could discern that in people with SLE, signals driving expansion and activation are present at an earlier stage of B cell differentiation than previously Read more

Head to head narcolepsy/hypersomnia study

At the sleep research meeting in San Antonio this year, there were signs of an impending pharmaceutical arms race in the realm of narcolepsy. The big fish in a small pond, Jazz Pharmaceuticals, was preparing to market its recently FDA-approved medication: Sunosi/solriamfetol. Startup Harmony Biosciences was close behind with pitolisant, already approved in Europe. On the horizon are experimental drugs designed to more precisely target the neuropeptide deficiency in people with classic narcolepsy type 1 Read more

Erik Reinertsen

Big data with heart, for psychiatric disorders

Imagine someone undergoing treatment by a psychiatrist. How do we know the treatment is really working or should be modified?

To assess whether the patient’s condition is objectively improving, the doctor could ask him or her to take home a heart rate monitor and wear it continuously for 24 hours. An app connected to the monitor could then track how much the patient’s heart rate varies over time and how much the patient moves.

Heart rate variability can be used to monitor psychiatric disorders

MD/PhD student Erik Reinertsen is the first author on two papers in Physiological Measurement advancing this approach, working under the supervision of Gari Clifford, interim chair of Emory’s Department of Biomedical Informatics.

Clifford’s team has been evaluating heart rate variability and activity as a tool for monitoring both PTSD (post-traumatic stress disorder) and schizophrenia. Clifford says his team’s research is expanding to look at treatment-resistant depression and other mental health issues.

For clinical applications, Clifford emphasizes that his plans focus on tracking disease severity for patients who are already diagnosed, rather than screening for new diagnoses. His team is involved in much larger studies in which heart rate data is being combined with physical activity data from smart watches, body patches, and clinical questionnaires, as well as other behavioral and exposure data collected through smartphone usage patterns.

Intuitively, heart rate variability makes sense for monitoring PTSD, because one of the core symptoms is hyperarousal, along with flashbacks and avoidance or numbness. However, it turns out that the time that provides the most information is when heart rate is lowest and study participants are most likely asleep, or at their lowest ebb during the night.

Home sleep tests generate a ton of information, which can be mined. This approach also fits into a trend for wearable medical technology, recently highlighted in STAT by Max Blau (subscription needed).

The research on PTSD monitoring grows out of work by cardiologists Amit Shah and Viola Vaccarino on heart rate variability in PTSD-discordant twin veterans (2013 Biological Psychiatry paper). Shah and Vaccarino had found that low frequency heart rate variability is much less (49 percent less) in the twin with PTSD. Genetics influences heart rate variability quite a bit, so studying twins allows those factors to be accounted for. Read more

Posted on by Quinn Eastman in Heart, Neuro Leave a comment