Tracing the start of COVID-19 in GA

At a time when COVID-19 appears to be receding in much of Georgia, it’s worth revisiting the start of the pandemic in early 2020. Emory virologist Anne Piantadosi and colleagues have a paper in Viral Evolution on the earliest SARS-CoV-2 genetic sequences detected in Georgia. Analyzing relationships between those virus sequences and samples from other states and countries can give us an idea about where the first COVID-19 infections in Georgia came from. We can draw Read more

Reddit as window into opioid withdrawal strategies

Drug abuse researchers are using the social media site Reddit as a window into the experiences of people living with opioid addiction. Abeed Sarker in Emory's Department of Biomedical Informatics has a paper in Clinical Toxicology focusing on the phenomenon of “precipitated withdrawal,” in collaboration with emergency medicine specialists from Penn, Rutgers and Mt Sinai. Precipitated withdrawal is a more intense form of withdrawal that can occur when someone who was using opioids starts medication-assisted treatment Read more

CROI: HIV cure report and ongoing research

The big news out of CROI (Conference on Retroviruses and Opportunistic Infections) was a report of a third person being cured of HIV infection, this time using umbilical cord blood for a hematopoetic stem cell transplant. Emory’s Carlos del Rio gave a nice overview of the achievement for NPR this morning. As del Rio explains, the field of HIV cure research took off over the last decade after Timothy Brown, known as “the Berlin patient,” Read more

Edward Mocarski

Transformative awards for Mocarski’s malleable cells, lung fibrosis

The National Institutes of Health has announced a five-year, $1.9 million Transformative Research Award to Emory virologist Edward Mocarski, PhD for his work on how the mechanisms of programmed cell death can be subverted.

Mocarski is Robert W. Woodruff professor of microbiology and immunology at Emory University School of Medicine and Emory Vaccine Center. His research, which originated in probing how cells commit suicide when taken over by viruses, could lead to advances in regenerative medicine and organ transplant.

Barker Mocarski

Thomas Barker, PhD (left) and Edward Mocarski, PhD (right)

The grant, funded through the National Institute of Allergy and Infectious Diseases, is one of nine “high-risk-, high-reward” Transformative Research Awards (13 recipients) announced by the NIH on October 6.

In the same group this year, Thomas Barker in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University received a Transformative Research Award for his research on mechanosensors + pulmonary fibrosis.

The Transformative Research Award program supports “exceptionally innovative, unconventional, paradigm-shifting research projects that are inherently risky and untested.” Emory has achieved only one other TRA since the program was established in 2009: Shuming Nie’s project on imaging to guide cancer surgery. Read more

Posted on by Quinn Eastman in Immunology Leave a comment

Two angles on cell death

One can take two very different angles when approaching Bill Kaiser’s and Ed Mocarski’s work on RIP kinases and the mechanisms of cell death. These are: the evolutionary where-does-apoptosis-come-from angle, and the anti-inflammatory drug discovery angle.

A pair of papers published this week, one in PNAS and one in Journal of Immunology, cover both of these angles. (Also, back to back papers in Cell this week, originating from Australia and Tennessee, touch on the same topic.)

First, the evolutionary angle.

Cellular suicide can be a “scorched earth” defense mechanism against viruses. Kaiser and Mocarski have been amassing evidence that some forms of cellular suicide arose as a result of an arms race of competition with viruses. The PNAS paper is part of this line of evidence. It shows that the cell-death circuits controlled by three different genes (RIP1, RIP3 and caspase 8) apparently can be lifted cleanly out of an animal. Mice lacking all three genes not only can be born, but have well-functioning immune systems.

Apoptosis is thought to be a form of cellular suicide important for the development of all multicellular organisms. That’s why, to cell and developmental biologists, it seemed rather shocking that researchers can mutate a group of genes that drive apoptosis and other forms of cellular suicide and have adult animals emerge.

Next, the drug discovery angle.

The J. Immunol paper makes that angle clear enough. Most of the authors on this paper are from GlaxoSmithKline’s “Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area.” Here, they show that a mutation in RIP1 inactivating the kinase enzyme protects mice against severe skin and multiorgan inflammation. They conclude their abstract with: “Together, these data suggest that RIP1 kinase represents an attractive therapeutic target for TNF-driven inflammatory diseases.”

Note: TNF-driven inflammatory diseases include rheumatoid arthritis, inflammatory bowel diseases and psoriasis, representing a multibillion dollar market.

 

Posted on by Quinn Eastman in Immunology Leave a comment

How CMV gets around

Human cytomegalovirus infects most people in the United States by the time they are 40 years old. HCMV is usually harmless in children and adults, but when pregnant women are infected for the first time, the infection can lead to hearing, vision or other problems in their babies once they are born. [It is also a problem for organ transplant recipients.] According to the Centers for Disease Control and Prevention, HCMV is usually transmitted by sexual contact, diapers or toys. Notably absent are references to needles. That means scientists who study how mouse CMV infection takes place by injecting the virus into the animal’s body are missing a critical step.

Postdoc Lisa Daley-Bauer, working with CMV expert Ed Mocarski, has a recent paper in the journal Cell Host & Microbe illuminating how the virus travels from sites of initial infections to the rest of the body. Defining the cells the virus uses to get around could have implications for efforts to design a HCMV vaccine.

The virus hijacks part of the immune system, the authors find. CMV emits its own attractant (or chemokine) for patrolling monocytes, a type of white blood cell that circulates in the skin and peripheral tissues. This attractant, called MCK2, is only important when mice are infected by footpad inoculation, not by systemic injection.

Posted on by Quinn Eastman in Immunology Leave a comment