Focus on mitochondria in schizophrenia research

Despite advances in genomics in recent years, schizophrenia remains one of the most complex challenges of both genetics and neuroscience. The chromosomal abnormality 22q11 deletion syndrome, also known as DiGeorge syndrome, offers a way in, since it is one of the strongest genetic risk factors for schizophrenia. Out of dozens of genes within the 22q11 deletion, several encode proteins found in mitochondria. A team of Emory scientists, led by cell biologist Victor Faundez, recently analyzed Read more

Fetal alcohol cardiac toxicity - in a dish

Alcohol-induced cardiac toxicity is usually studied in animal models; a cell-culture based approach could make it easier to study possible interventions more Read more

Fighting cancer with combinatorial imagination

Arbiser says he arrived at Tris-DBA-palladium by using his chemist’s imagination, in a “your chocolate landed in my peanut butter” kind of Read more

XMRV

A family of troublemakers known as XMRV

A long-delayed paper on the connection between chronic fatigue syndrome and XMRV (xenotropic murine leukemia virus-related virus) finally surfaced last week in PNAS. Astute readers may recall that XMRV has also been linked to prostate cancer.

Detecting XMRV in prostate tissue. A variety of assays (neutralizing antibodies, polymerase chain reaction or fluorescence in situ hybridization) may be used to look for XMRV

The twist from last week’s paper is that the NIH/FDA team, led by Harvey Alter, didn’t find viruses all with the same sequence in chronic fatigue patients. Instead, they found a cluster of closely related, but different, viruses. While confusing, these results may explain why tests for the presence of the virus that are based on viral DNA sequences may have generated varying (and conflicting) results. An alternative assay based on antibodies, such as the one urologist John Petros and colleagues at Emory developed, may be useful because it casts a wider net.

Pathologist Hinh Ly has been diving into the XMRV field, with a recent paper in Journal of Virology describing what “gateway” (receptor) molecule the virus uses to sneak into cells and what kinds of cells in the prostate it can infect.

In a collaboration with Ila Singh at the University of Utah, antiviral drug expert Raymond Schinazi has found that a number of drugs active against HIV also stop XMRV. This offers some hope that if doctors can detect members of the XMRV family, and figure out what they’re up to, they might be able to combat the troublemakers as well.

Posted on by Quinn Eastman in Uncategorized Leave a comment