Mouse version of 3q29 deletion: insights into schizophrenia/ASD pathways

Emory researchers see investigating 3q29 deletion as a way of unraveling schizophrenia’s biological and genetic Read more

B cells off the rails early in lupus

Emory scientists could discern that in people with SLE, signals driving expansion and activation are present at an earlier stage of B cell differentiation than previously Read more

Head to head narcolepsy/hypersomnia study

At the sleep research meeting in San Antonio this year, there were signs of an impending pharmaceutical arms race in the realm of narcolepsy. The big fish in a small pond, Jazz Pharmaceuticals, was preparing to market its recently FDA-approved medication: Sunosi/solriamfetol. Startup Harmony Biosciences was close behind with pitolisant, already approved in Europe. On the horizon are experimental drugs designed to more precisely target the neuropeptide deficiency in people with classic narcolepsy type 1 Read more

Hinh Ly

A family of troublemakers known as XMRV

A long-delayed paper on the connection between chronic fatigue syndrome and XMRV (xenotropic murine leukemia virus-related virus) finally surfaced last week in PNAS. Astute readers may recall that XMRV has also been linked to prostate cancer.

Detecting XMRV in prostate tissue. A variety of assays (neutralizing antibodies, polymerase chain reaction or fluorescence in situ hybridization) may be used to look for XMRV

The twist from last week’s paper is that the NIH/FDA team, led by Harvey Alter, didn’t find viruses all with the same sequence in chronic fatigue patients. Instead, they found a cluster of closely related, but different, viruses. While confusing, these results may explain why tests for the presence of the virus that are based on viral DNA sequences may have generated varying (and conflicting) results. An alternative assay based on antibodies, such as the one urologist John Petros and colleagues at Emory developed, may be useful because it casts a wider net.

Pathologist Hinh Ly has been diving into the XMRV field, with a recent paper in Journal of Virology describing what “gateway” (receptor) molecule the virus uses to sneak into cells and what kinds of cells in the prostate it can infect.

In a collaboration with Ila Singh at the University of Utah, antiviral drug expert Raymond Schinazi has found that a number of drugs active against HIV also stop XMRV. This offers some hope that if doctors can detect members of the XMRV family, and figure out what they’re up to, they might be able to combat the troublemakers as well.

Posted on by Quinn Eastman in Uncategorized Leave a comment

Congrats to the telomere/ribosome Nobelists

Congratulations to Elizabeth Blackburn, Carol Greider and Jack Szostak for the 2009 Nobel Prize in medicine. The award is for their work on telomeres, the protective caps on the ends of chromosomes that shorten with every cell division and need specialized enzymes to be replenished.

Greider, Blackburn and Szostak discovered telomerase, the enzyme that copies the ends of chromosomes using a special RNA template. Telomerase is turned off in most human cells, but cancer cells often must reactivate it so that they can keep dividing like crazy.

The discovery of telomerase has led to new leads for potential anticancer drugs. This is a good example of the impact basic research can have on medicine, since the prize-winners were not thinking about anticancer drugs in the 1980s when they were doing their work.

Telomeres are specialized protective structures at the ends of chromosomes

Telomeres are specialized protective structures at the ends of chromosomes

The telomere trio’s work relates to several lines of research at Emory.

Immunologist Cornelia Weyand and her colleagues have shown that the telomeres of T cells are abnormally shortened in patients with rheumatoid arthritis. In effect, their cells’ chromosomes are prematurely aged. This result provides some hints on how to treat autoimmune diseases.

If blood-forming stem cells can’t keep their telomeres in shape, they can’t continue to regenerate the blood. Pathologist Hinh Ly’s research has made a connection between genetic defects in telomere maintenance and bone marrow failure syndrome in human patients.

Geneticists Christa Martin and David Ledbetter have been probing the relationship between mutations or recombination in the regions of the chromosome adjacent to telomeres and developmental disorders such as autism and mental retardation.

The 2009 Nobel Prize in Chemistry, awarded to Venki Ramakrishnan, Tom Steitz and Ada Yonath, has an even stronger connection to Emory. Christine Dunham, part of a growing contingent of crystallographers here, worked on ribosome structure in Ramakrishnan’s lab at the MRC.

The ribosome is a machine that decodes mRNA and produces protein step by step

The ribosome is a machine that decodes mRNA and produces protein step by step

She is examining the molecular details of how antibiotics and viruses perturb ribosome function.

What the two Nobels have in common is that they both honor work on molecular machines containing RNA, connections to the ancient, shadowy “RNA world“.

Posted on by Quinn Eastman in Uncategorized Leave a comment