New animal model for elimination of latent TB

An animal model could help researchers develop shorter courses of treatment for latent Read more

Transplant research: immune control via Fc receptors on T cells

Emory transplant researchers have identified a control mechanism the immune system uses to tamp down chronic inflammation. The findings provide insight into how some people were able to stop taking immunosuppressive drugs after kidney transplant. In addition, they may be important for a full understanding of how many drugs for cancer and autoimmune disorders (therapeutic antibodies) work. The results were published on January 14 in Immunity. In a twist, scientists have known about the molecules involved Read more

Probing visual memory at leisure

"Anecdotally, the paradigm appears to be strikingly less distressing and frustrating to both research participants and clinical patient populations than traditional neuropsychological Read more


SUMO wrestling enzyme important in DNA repair

The DNA in our cells is constantly being damaged by heat, radiation and other environmental stresses, and the enzyme systems that repair DNA are critical for life. A particularly toxic form of damage is the covalent attachment of a protein to DNA, which can be triggered by radiation or by anticancer drugs.

Keith Wilkinson, PhD

Emory biochemist Keith Wilkinson and colleagues have a paper this week in the journal eLife probing how a yeast protein called Wss1 is involved in repairing DNA-protein crosslinks. The researchers show how Wss1 wrestles with a protein tag called SUMO on the site of the DNA damage, and how Wss1 and SUMO are involved in the cleanup process.

Three interesting things about this paper:

*The paper grew out of first author Maxim Balakirev’s sabbatical with Wilkinson at Emory. Balakirev’s home base is at the CEA (Alternative Energy and Atomic Energy Commission) in Grenoble, France.

* Since many cancer chemotherapy drugs induce protein-DNA cross links, an inhibitor of cross link repair could enhance those drugs’ effectiveness. On the other side of the coin, mutations in a human gene called Spartan, whose sequence looks similar to Wss1’s, cause premature aging and susceptibility to liver cancer. Whether the Spartan-encoded protein has the same biochemical activity as Wss1 is not yet clear.

*SUMO stands for “small ubiquitin-like modifier”. The eLife digest has an elegant explanation of what’s happening: Read more

Posted on by Quinn Eastman in Cancer Leave a comment