Peeling away pancreatic cancers' defenses

A combination immunotherapy approach that gets through pancreatic cancers’ extra Read more

Immune cell activation in severe COVID-19 resembles lupus

In severe cases of COVID-19, Emory researchers have been observing an exuberant activation of B cells, resembling acute flares in systemic lupus erythematosus (SLE), an autoimmune disease. The findings point towards tests that could separate some COVID-19 patients who need immune-calming therapies from others who may not. It also may begin to explain why some people infected with SARS-CoV-2 produce abundant antibodies against the virus, yet experience poor outcomes. The results were published online on Oct. Read more

Muscle cell boundaries: some assembly required

The worm C elegans gives insight into muscle cell assembly + architecture Read more

Department of Biochemistry

Tweaks to corticosteroids may reduce side effects

Steroid anti-inflammatory drugs such as dexamethasone and prednisone are widely used to treat conditions such as allergies, asthma, autoimmune diseases, cancer – and now, COVID-19. Yet they can have harmful side effects on the skin, bones and metabolism.

The side effects are thought to come from a molecular mechanism that is separate from the anti-inflammatory one, and scientists have envisioned that it may be possible to divide the two. A new paper in PNAS from Emory biochemist Eric Ortlund’s lab sketches out how one potential alternative may work.

Synthetic corticosteroids mimic the action of the stress hormone cortisol; both bind the glucocorticoid receptor (GR) protein. Ortlund’s group obtained structural information on how vamorolone, an experimental drug, sticks to the part of GR that binds hormones.

The American company ReveraGen and Swiss partner Santhera are developing vamorolone for Duchenne muscular dystrophy, but it is possible to envision several other conditions such as ulcerative colitis for which vamorolone or a similar drug could be helpful. Vamorolone is NOT approved by the FDA for Duchenne muscular dystrophy or any other indication.

As far as its interaction with GR, what sets vamorolone apart from conventional corticosteroids is quite subtle: a missing hydrogen bond. This means that GR doesn’t interact as well with various partner proteins, which are needed to turn on genes involved in processes such as metabolism and bone growth.  However, the anti-inflammatory effects result mainly from turning inflammatory and immune system genes off, and those interactions are maintained. More on that distinction here and here.

Read more

Posted on by Quinn Eastman in Uncategorized Leave a comment

Burning fat like a baby

Newborn humans and hibernating mammals have high levels of brown adipose tissue, which they use to generate heat. Adult humans generally don’t have abundant brown adipose tissue, even if they have lots of “white” fat. Increasing brown fat’s activity may be an approach to treat obesity and related metabolic disorders.

Recently researchers identified an enzyme called Them1 (thioesterase superfamily member 1) as a factor that limits heat generation in brown adipose tissue. Emory biochemist Eric Ortlund and his lab showed how part of the Them1 enzyme binds a certain type of lipid molecule, and also how that part of the enzyme anchors the enzyme close to lipid droplets in adipose cells. Former graduate student Matt Tillman, now a postdoc at Duke, was the first author of the new paper in Proceedings of the National Academy of Sciences.

“In this study, we show Them1 contains a lipid sensor module that detects specific lipids within the cell to regulate its activity,” says Tillman.

In brown adipose cells, the lipid-sensing domain of Them1 is needed for localization around lipid droplets

From Tillman et al PNAS (2020)

He and his colleagues showed that a lipid known for its role in cell signaling, lysophosphatidylcholine or LPC, inhibits Them1 activity, which in turn activates thermogenesis in brown adipose tissue. In contrast, other fatty acids that serve as fuel tend to activate Them1. This regulatory system within Them1 allows the cell to sense its metabolic state and decide when to burn or conserve fat.

Read more

Posted on by Quinn Eastman in Uncategorized Leave a comment

Triple play in science communication

Emory BCDB graduate student Emma D’Agostino

We are highlighting Emory BCDB graduate student Emma D’Agostino, who is a rare triple play in the realm of science communication.

Emma has her own blog, where she talks about what it’s like to have cystic fibrosis. Recent posts have discussed the science of the disease and how she makes complicated treatment decisions together with her doctors. She’s an advisor to the Cystic Fibrosis Foundation on patient safety, communicating research and including the CF community in the research process. She’s also working in biochemist Eric Ortlund’s lab on nuclear receptors in the liver:drug targets for the treatment of diabetes and intestinal diseases.

The triple play is this — on her blog, Emma has discussed how she has to deal with antibiotic resistance. Emory Antibiotic Resistance Center director David Weiss’ lab has published a lot on colistin: how it’s a last-resort drug because of side effects, and how difficult-to-detect resistance to it is spreading. Emma has some personal experience with colistin that for me, brought the issue closer. Read more

Posted on by Quinn Eastman in Uncategorized Leave a comment

Super-cold technique = hot way to see enzyme structure

In the last decade, a revolution has been taking place in structural biology, the field in which scientists produce detailed maps of how enzymes and other machines in the cell work. That revolution is being driven by cryo-electron microscopy (cryo-EM for short), which is superseding X-ray crystallography as the main data-production technique and earned a chemistry Nobel in 2017.

Just before COVID-19 sent some Emory researchers home and drove others to pivot their work toward coronavirus, Lab Land had a chance to tour the cryo-EM facility and take photos, with the help of Puneet Juneja, director of the core. Juneja demonstrated how samples are prepared for data collection — see the series of photos below.

Someone coming into the facility in the Biochemistry Connector area will notice a sign telling visitors and those passing by to stay quiet (forgot to take a photo of that!). The facility has electrical shielding and temperature/humidity controls. Also two levels of cooling are required for samples, since they are flash-frozen or “vitrified” in liquid ethane, which is in turn cooled by liquid nitrogen. The cooling needs to happen quickly so that ice crystals do not form. The massive cryo-EM equipment rests on a vibration-reduction platform; no music and no loud conversation are allowed during data collection.

One of the first structures obtained in this relatively new facility was the structure of a viral RNA polymerase, the engine behind viral replication. It wasn’t a coronavirus enzyme – it was from RSV (respiratory syncytial virus).

Still, cryo-EM is a way to visualize exactly how drugs that inhibit the SARS-CoV-2 polymerase – such as remdesivir or Emory’s own EIDD-2801 – exert their effects. Chinese researchers recently published a cryo-EM structure of the SARS-CoV-2 polymerase with remdesivir in Science. Read more

Posted on by Quinn Eastman in Immunology, Uncategorized Leave a comment

Tracking how steroid hormone receptor proteins evolved

When thinking about the evolution of female and male, consider that the first steroid receptor proteins, which emerged about 550 million years ago, were responsive to estrogen. The ancestor of other steroid hormone receptors, responsive to hormones such as testosterone, progesterone and cortisol, emerged many millions of years later.

Blue = estrogen-responsive receptors, Orange = non-aromatized (progesterone, testosterone, cortisol) hormone-responsive

Biochemist Eric Ortlund and colleagues have a new paper in Structure that reconstructs how interactions of steroid receptor proteins evolved over time. This is a complex area to model, since the receptors change shape when they bind their respective hormones, allowing them to bring in other proteins and activate genes.

First author C. Denise Okafor, a FIRST postdoctoral fellow at Emory, will be starting a position as assistant professor at Penn State next month.

The scientists also show that a mutation in the mineralocorticoid receptor associated with severe hypertension (S810L), which makes the receptor more promiscuous, restores an ancestral interaction within the protein.

“Evolutionary substitutions rewired the networks, subsequently altering hormonal interactions and allowing steroid receptors to achieve ligand specificity over time,” the authors write.

Posted on by Quinn Eastman in Uncategorized Leave a comment

Biochemists grab slippery target: LRH-1

To fight fat, scientists had to figure out how to pin down a greasy, slippery target. Researchers at Emory University and Baylor College of Medicine have identified compounds that potently activate LRH-1, a liver protein that regulates the metabolism of fat and sugar. These compounds have potential for treating diabetes, fatty liver disease and inflammatory bowel disease.

Their findings were recently published online in Journal of Medicinal Chemistry.

LRH-1 is thought to sense metabolic state by binding a still-undetermined group of greasy molecules: lipids or phospholipids. It is a nuclear receptor, a type of protein that turns on genes in response to hormones or vitamins. The challenge scientists faced was in designing drugs that fit into the same slot occupied by the lipids.

“Phospholipids are typically big, greasy molecules that are hard to deliver as drugs, since they are quickly taken apart by the digestive system,” says Eric Ortlund, PhD, associate professor of biochemistry at Emory University School of Medicine. “We designed some substitutes that don’t fall apart, and they’re highly effective – 100 times more potent that what’s been found already.”

Previous attempts to design drugs that target LRH-1 ran into trouble because of the grease. Two very similar molecules might bind LRH-1 in opposite orientations. Ortlund’s lab worked with Emory chemist Nathan Jui, PhD and his colleagues to synthesize a large number of compounds, designing a “hook” that kept them in place. Based on previous structural studies, the hook could stop potential drugs from rotating around unpredictably. Read more

Posted on by Quinn Eastman in Uncategorized Leave a comment

Shape-shifting RNA regulates viral sensor

Congratulations to Emory biochemists Brenda Calderon and Graeme Conn. Their recent Journal of Biological Chemistry paper on a shape-shfting RNA was selected as an Editor’s Pick and cited as a “joy to read… Technically, the work is first class, and the writing is clear.”

Calderon, a former BCDB graduate student and now postdoc, was profiled by JBC in August.

Brenda Calderon, PhD

Calderon and Conn’s JBC paper examines regulation of the enzyme OAS (oligoadenylate synthetase). OAS senses double-stranded RNA: the form that viral genetic material often takes. When activated, OAS makes a messenger molecule that drives internal innate immunity enzymes to degrade the viral material (see below).

OAS is in turn regulated by a non-coding RNA, called nc886. Non-coding means this RNA molecule is not carrying instructions for building a protein. Calderon and Conn show that nc886 takes two different shapes and only one of them activates OAS.

Conn says in a press release prepared by JBC that although nc886 is present in all human cells, it’s unknown how abundance of its two forms might change in response to infection. Read more

Posted on by Quinn Eastman in Uncategorized Leave a comment

Tracking a frameshift through the ribosome

Ribosomes, the factories that assemble proteins in cells, read three letters of messenger RNA at a time. Occasionally, the ribosome can bend its rules, and read either two or four nucleotides, altering how downstream information is read: frameshifting.

This week, Christine Dunham’s lab in the Department of Biochemistry has a paper in PNAS on how ribosomal frameshifting works, one of several she has published on this topic. The first author is postdoc Samuel Hong, now at MD Anderson. A commentary in PNAS calls their paper a “major advance” and “culmination of a half-century quest.”

A suppressor tRNA can occupy more than one site on the ribosome. Adapted figure courtesy of Christine Dunham

Some antibiotics disrupt protein synthesis by encouraging frameshifting to occur, so a thorough understanding of frameshifting benefits antibiotic research. Also, scientists are aiming to use the process to customize proteins for industrial and pharmaceutical applications, by inserting amino acid building blocks not found in nature.

When mutations add or subtract a letter from a protein-coding gene, that usually turns the rest of the gene to nonsense. Compensatory mutations in the same gene can push the genetic letters back into the correct frame. However, others are separate, found within the machinery for translating the genetic code, namely transfer RNAs: the adaptors that bring amino acids into the ribosome. Suppressor tRNAs can compensate for a forward frameshift in another gene.

The Dunham lab’s new paper solves the structure of a bacterial ribosome undergoing “recoding” influenced by a suppressor tRNA. Her group had previously captured how the ribosomes decode this tRNA in one site of the ribosome, the aminoacyl or A site, in a 2014 PNAS paper. The new structures show how the tRNA moves through the ribosome out-of-frame to recode. The tRNA undergoes unusual rearrangements that cause the ribosome to lose its grip on the mRNA frame and allows the tRNA to form new interactions with the ribosome to shift into a new reading frame.

Posted on by Quinn Eastman in Uncategorized Leave a comment

What are rods and rings?

This image of mouse embryonic fibroblasts comes from Cara Schiavon, a graduate student in Rick Kahn’s lab in the Department of Biochemistry. It was impressive enough to capture interest from Emory Medicine‘s graphics designer Peta Westmaas. The light green shapes are “Rods and Rings,” structures that were identified just a few years ago by scientists studying how cells respond to antiviral drugs, such as those used against hepatitis C.

The rod and ring structures appear to contain enzymes that cells use for synthesizing DNA building blocks. Patients treated with some antiviral drugs develop antibodies against these enzymes.

The turquoise color represents microtubules, components of cells’ internal skeletons. The orange color shows DNA within nuclei. The spots in the nuclei are areas where DNA is more compact. The overall image is a “z-stack projection” acquired using the Olympus FV1000 confocal microscope in Emory’s Integrated Cellular Imaging Core.

Posted on by Quinn Eastman in Uncategorized Leave a comment

Toe in the water for Emory cryo-EM structures

Congratulations to Christine Dunham and colleagues in the Department of Biochemistry for their first cryo-electron microscopy paper, recently published in the journal Structure.

The paper solves the structure of a bacterial ribosome bound to a messenger RNA containing a loop that regulates translation. This process is important for the study of several neurological diseases such as fragile X syndrome, for example.

Christine Dunham, PhD

Dunham writes: “We are focusing on establishing this in bacteria to understand frameshifting and protein folding as a consequence of codon preference. We will then build up our knowledge to potentially study eukaryotic translational control.”

The paper neatly links up with two Nobel Prizes: the 2017 Chemistry prize for cryo-electron microscopy and the 2009 Chemistry prize for ribosome structure, awarded in part to Dunham’s mentor Venki Ramakrishnan. Also, see this 2015 feature from Nature’s Ewen Callaway outlining how cryo-EM is a must have for structural biologists wanting to probe large molecules that are difficult to crystallize.

Construction now underway in the Biochemistry Connector will allow installation of microscopes (worth $6 million) necessary for Dunham and others to do cryo-EM here at Emory, although she advises that it will be several months until they are photo-op ready. For the Structure paper, Dunham collaborated with George Skiniotis at University of Michigan; he recently moved to Stanford. Read more

Posted on by Quinn Eastman in Neuro, Uncategorized Leave a comment