Sensitive to (transplant) rejection

An experimental screening method, developed by Emory and Georgia Tech scientists, aims to detect immune rejection of a transplanted organ earlier and without a biopsy Read more

CAPTCHA some cancer cells

Lee Cooper and colleagues explore crowdsourcing in pathology -- using slides from the Cancer Genome Read more

Bird flu shuffle probes viral compatibility

The good news is that packaging signals on the H5 and H7 viral RNA genomes are often incompatible with the H3N2 viruses. But mix and match still occurred at a low level, particularly with Read more

neuregulin

Unlocking schizophrenia biology via genetics

Kristen Thomas, PhD, now a postdoctoral fellow at St Jude Children’s Research Hospital

Schizophrenia genetics and its complexities are beginning to yield to large genome-wide studies. One of the recently identified top risk loci, miR 137, can be seen as a master key that unlocks other doors. The Mir 137 locus encodes a micro RNA that regulated hundreds of other genes, and several of those are also linked to schizophrenia.

Earlier this month, Emory’s chair of cell biology Gary Bassell and former graduate student Kristen Thomas published a paper in Cell Reports analyzing how perturbing Mir 137 affects signaling in neurons. Inhibiting Mir 137 blocked neurons’ responses to neuregulin and BDNF, well-known growth factors.

“We think a particularly interesting aspect of our paper is that it links miR137, neuregulin and ErbB4 receptor: three molecules with known genetic risk for schizophrenia,” Bassell writes. Read more

Posted on by Quinn Eastman in Neuro Leave a comment