Mouse version of 3q29 deletion: insights into schizophrenia/ASD pathways

Emory researchers see investigating 3q29 deletion as a way of unraveling schizophrenia’s biological and genetic Read more

B cells off the rails early in lupus

Emory scientists could discern that in people with SLE, signals driving expansion and activation are present at an earlier stage of B cell differentiation than previously Read more

Head to head narcolepsy/hypersomnia study

At the sleep research meeting in San Antonio this year, there were signs of an impending pharmaceutical arms race in the realm of narcolepsy. The big fish in a small pond, Jazz Pharmaceuticals, was preparing to market its recently FDA-approved medication: Sunosi/solriamfetol. Startup Harmony Biosciences was close behind with pitolisant, already approved in Europe. On the horizon are experimental drugs designed to more precisely target the neuropeptide deficiency in people with classic narcolepsy type 1 Read more

glucose

A sickly sweet anticancer drug

Cancer cells are well known for liking the simple sugar glucose. Their elevated appetite for glucose is part of the Warburg effect, a metabolic distortion that has them sprinting all the time (glycolysis) despite the presence of oxygen.

A collaboration between researchers at Winship Cancer Institute, Georgia State and University of Mississippi has identified a potential drug that uses cancer cells’ metabolic preferences against them: it encourages the cells to consume so much glucose it makes them sick.

Their findings were published in Oncotarget. Read more

Posted on by Quinn Eastman in Cancer Leave a comment

Resurgence of interest in cancer cell metabolism

A recent article in Nature describes the resurgence of interest in cancer cell metabolism. This means exploiting the unique metabolic dependencies of cancer cells, such as their increased demand for glucose.

Cancer cells' preference for glucose is named after 1931 Nobelist Otto Warburg

Otto Warburg, who won the Nobel Prize in Medicine in 1931, noticed that cancer cells have a “sweet tooth” decades ago, but only recently have researchers learned enough about cancer cells’ regulatory circuitry to possibly use this to their advantage.

At Winship Cancer Institute of Emory University, several scientists have been investigating aspects of this phenomenon. Jing Chen and his team have identified a switch, the enzyme pyruvate kinase, which many types of cancer use to control glucose metabolism, and that might be a good drug target.

Jing Chen, PhD, and Taro Hitosugi, PhD

Shi-Yong Sun, Wei Zhou and their colleagues have found that cancer cells are sneaky: blockade the front door (for glucose metabolism, this means hitting them with the chemical 2-deoxyglucose) and they escape out the back by turning on certain survival pathways. This means combination tactics or indirectly targeting glucose metabolism through the molecule mTOR might be more effective, the Nature article says.

A quote from the article:

Clearly, metabolic pathways are highly interconnected with pathways that govern the hallmarks of cancer, such as unrestrained proliferation and resistance to cell death. The many metabolic enzymes, intermediates and products involved could be fertile ground for improving cancer diagnostics and therapeutics.

Posted on by Quinn Eastman in Cancer Leave a comment