Preparing for weapons production

At Lab Land, we have been thinking and writing a lot about plasma cells, which are like mobile microscopic weapons factories. Plasma cells secrete antibodies. They are immune cells that appear in the blood (temporarily) and the bone marrow (long-term). A primary objective for a vaccine – whether it’s against SARS-CoV-2, flu or something else -- is to stimulate the creation of plasma cells. A new paper from Jerry Boss’s lab in Nature Communications goes into Read more

SARS-CoV-2 culture system using human airway cells

Journalist Roxanne Khamsi had an item in Wired highlighting how virologists studying SARS-CoV-2 and its relatives have relied on Vero cells, monkey kidney cells with deficient antiviral responses. Vero cells are easy to culture and infect with viruses, so they are a standard laboratory workhorse. Unfortunately, they may have given people the wrong idea about the controversial drug hydroxychloroquine, Khamsi writes. In contrast, Emory virologist Mehul Suthar’s team recently published a Journal of Virology paper on culturing Read more

Triple play in science communication

We are highlighting Emory BCDB graduate student Emma D’Agostino, who is a rare triple play in the realm of science communication. Emma has her own blog, where she talks about what it’s like to have cystic fibrosis. Recent posts have discussed the science of the disease and how she makes complicated treatment decisions together with her doctors. She’s an advisor to the Cystic Fibrosis Foundation on patient safety, communicating research and including the CF community Read more

Wei Zhou

Resurgence of interest in cancer cell metabolism

A recent article in Nature describes the resurgence of interest in cancer cell metabolism. This means exploiting the unique metabolic dependencies of cancer cells, such as their increased demand for glucose.

Cancer cells' preference for glucose is named after 1931 Nobelist Otto Warburg

Otto Warburg, who won the Nobel Prize in Medicine in 1931, noticed that cancer cells have a “sweet tooth” decades ago, but only recently have researchers learned enough about cancer cells’ regulatory circuitry to possibly use this to their advantage.

At Winship Cancer Institute of Emory University, several scientists have been investigating aspects of this phenomenon. Jing Chen and his team have identified a switch, the enzyme pyruvate kinase, which many types of cancer use to control glucose metabolism, and that might be a good drug target.

Jing Chen, PhD, and Taro Hitosugi, PhD

Shi-Yong Sun, Wei Zhou and their colleagues have found that cancer cells are sneaky: blockade the front door (for glucose metabolism, this means hitting them with the chemical 2-deoxyglucose) and they escape out the back by turning on certain survival pathways. This means combination tactics or indirectly targeting glucose metabolism through the molecule mTOR might be more effective, the Nature article says.

A quote from the article:

Clearly, metabolic pathways are highly interconnected with pathways that govern the hallmarks of cancer, such as unrestrained proliferation and resistance to cell death. The many metabolic enzymes, intermediates and products involved could be fertile ground for improving cancer diagnostics and therapeutics.

Posted on by Quinn Eastman in Cancer Leave a comment