Tracing the start of COVID-19 in GA

At a time when COVID-19 appears to be receding in much of Georgia, it’s worth revisiting the start of the pandemic in early 2020. Emory virologist Anne Piantadosi and colleagues have a paper in Viral Evolution on the earliest SARS-CoV-2 genetic sequences detected in Georgia. Analyzing relationships between those virus sequences and samples from other states and countries can give us an idea about where the first COVID-19 infections in Georgia came from. We can draw Read more

Reddit as window into opioid withdrawal strategies

Drug abuse researchers are using the social media site Reddit as a window into the experiences of people living with opioid addiction. Abeed Sarker in Emory's Department of Biomedical Informatics has a paper in Clinical Toxicology focusing on the phenomenon of “precipitated withdrawal,” in collaboration with emergency medicine specialists from Penn, Rutgers and Mt Sinai. Precipitated withdrawal is a more intense form of withdrawal that can occur when someone who was using opioids starts medication-assisted treatment Read more

CROI: HIV cure report and ongoing research

The big news out of CROI (Conference on Retroviruses and Opportunistic Infections) was a report of a third person being cured of HIV infection, this time using umbilical cord blood for a hematopoetic stem cell transplant. Emory’s Carlos del Rio gave a nice overview of the achievement for NPR this morning. As del Rio explains, the field of HIV cure research took off over the last decade after Timothy Brown, known as “the Berlin patient,” Read more

Emory Personalised Immunotherapy Center

Cancer immunotherapy, meet chimera

697px-Chimera_d'arezzo,_fi,_03

In Greek mythology, the chimera was a monstrous fire-breathing creature composed of the parts of three animals: a lion, a snake and a goat.

Adoptive cell transfer is advancing as a cancer immunotherapy technique. It involves removing some of a patient’s immune cells, culturing them in the laboratory, and then infusing the cells back into the patient. The idea is to enhance the ability of the immune cells to attack the tumors far beyond what the immune system was able of doing on its own.

Two promising examples are the National Cancer Institute’s approach of treating advanced melanoma with IL-2-stimulated immune cells, and several investigators’ approach of genetically engineering T cells to attack leukemias or lymphomas.

Jacques Galipeau and colleagues at Winship Cancer Institute have developed a chimeric molecule for stimulating immune cells, which appears to have unique powers beyond simply the sum of its two parts. The molecule is called GIFT4, a fusion of the immune signaling molecules GM-CSF (often used in cancer treatment) and IL-4.

Read more

Posted on by Quinn Eastman in Cancer, Immunology Leave a comment