More NMDA but less excitotoxicity? Now possible

Many researchers have wanted to enhance NMDA receptor signals to treat disorders such as schizophrenia. But at the same time, they need to avoid killing neurons with “excitotoxicity”, which comes from excess calcium entering the Read more

Update on pancreatic cancer: images and clinical trial

In 2018, Winship magazine had a feature story on pancreatic cancer. Our team developed an illustration that we hoped could convey the tumors’ complex structure, which contributes to making them difficult to treat. Oncologist Bassel El-Rayes described how the tumors recruit other cells to form a protective shell. "If you look at a tumor from the pancreas, you will see small nests of cells embedded in scar tissue," he says. "The cancer uses this scar Read more

New animal model for elimination of latent TB

An animal model could help researchers develop shorter courses of treatment for latent Read more

choline

The other “cho-” cardiovascular disease biomarker

Quick, what biomarker whose name starts with “cho-” is connected with cardiovascular disease? Very understandable if your first thought is “cholesterol.” Today I’d like to shift focus to a molecule with a similar name, but a very different structure: choline.

Choline, a common dietary lipid component and an essential nutrient, came to prominence in cardiology research in 2011 when researchers at the Cleveland Clinic found that choline and its relatives can contribute to cardiovascular disease in a way that depends upon intestinal bacteria. In the body, choline is part of two phospholipids that are abundant in cell membranes, and is also a precursor for the neurotransmitter acetylcholine. Some bacteria can turn choline (and also carnitine) into trimethylamine N-oxide (TMAO), high levels of which predict cardiovascular disease in humans. TMAO in turn seems to alter how inflammatory cells take up cholesterol and lipids.

Researchers at Emory arrived at choline metabolites and their connection to atherosclerosis by another route. Hanjoong Jo and his colleagues have been productively probing the mechanisms of atherosclerosis with an animal model. Very briefly: inducing disturbed blood flow in mice, in combination with a high fat diet, can result in atherosclerotic plaque formation within a few weeks. Jo’s team has used this model to examine changes in gene activation, microRNAs, DNA methylation, and now, metabolic markers.

Talking about this study at Emory’s Clinical Cardiovascular seminar on Friday, metabolomics specialist Dean Jones said he was surprised by the results, which were recently published by the American Journal of Physiology (to be precise, their ‘omics journal). The lead author is instructor Young-Mi Go. Read more

Posted on by Quinn Eastman in Heart Leave a comment