Overcoming cardiac pacemaker "source-sink mismatch"

Instead of complication-prone electronic cardiac pacemakers, biomedical engineers at Georgia Tech and Emory envision the creation of “biological Read more

Hope Clinic part of push to optimize HIV vaccine components

Ten years ago, the results of the RV144 trial– conducted in Thailand with the help of the US Army -- re-energized the HIV vaccine field, which had been down in the Read more

Invasive cancer cells marked by distinctive mutations

What does it take to be a leader – of cancer cells? Adam Marcus and colleagues at Winship Cancer Institute are back, with an analysis of mutations that drive metastatic behavior among groups of lung cancer cells. The findings were published this week on the cover of Journal of Cell Science, and suggest pharmacological strategies to intervene against or prevent metastasis. Marcus and former graduate student Jessica Konen previously developed a technique for selectively labeling “leader” Read more

CHOA

Addendum on CRISPR

An excellent example of the use of CRISPR gene editing technology came up at the Emory-Children’s Pediatric Research Center’s Innovation Conference this week.

Marcela Preininger, who is working with cardiomyocyte stem cell specialist Chunhui Xu, described her work (poster abstract 108) on cells derived from a 12 year old patient with an inherited cardiac arrhythmia syndrome: catecholaminergic polymorphic ventricular tachycardia or CPVT. Her team has obtained skin fibroblasts from the patient, and converted those cells into induced pluripotent stem cells, which can then be differentiated into cardiac muscle cells or cardiomyocytes.

Working with TJ Cradick, director of the Protein Engineering Facility at Georgia Tech, Preininger is testing out CRISPR gene editing as a means of correcting the defect in this patient’s cells, outside the body. Cradick says that while easy and efficient, RNA-directed CRISPR can be lower in specificity compared to the protein-directed TALEN technology.

From Preininger’s abstract:

Once the mutation has been corrected at the stem cell level, we will investigate whether the repaired (mutation-free) iPS cells can be differentiated into functional cardiomyocytes with normal Ca2+ handling properties, while closely monitoring the cells for mutagenic events. Pharmacological restoration of the normal myocardial phenotype will also be optimized and explored in our model.

Posted on by Quinn Eastman in Heart Leave a comment