Transition to exhaustion: clues for cancer immunotherapy

Research on immune cells “exhausted” by chronic viral infection provides clues on how to refine cancer immunotherapy. The results were published Tuesday, Dec. 3 in Immunity. Scientists at Emory Vaccine Center, led by Rafi Ahmed, PhD, have learned about exhausted CD8 T cells, based on studying mice with chronic viral infections. In the presence of persistent virus or cancer, CD8 T cells lose much of their ability to fight disease, and display inhibitory checkpoint proteins Read more

Radiologists wrestle with robots - ethically

Emory bioethicist John Banja says: don’t believe the hype about AI replacing Read more

Opioids: crunching the Tweets

The aim is to be able to spot patterns of overdoses faster than prescription drug monitoring Read more

Analytical Chemistry

Device for viewing glowing brain tumors

People touched by a brain tumor — patients, their families or friends — may have heard of the drug Gliolan or 5-ALA, which is taken up preferentially by tumor cells and makes them fluorescent. The idea behind it is straightforward: if the neurosurgeon can see the tumor’s boundaries better during surgery, he or she can excise it more thoroughly and accurately.

5-ALA is approved for use in Europe but is still undergoing evaluation by the U.S. FDA. A team at Emory was the first to test this drug in the United States. [Note: A similar approach, based on protease activation of a fluorescent probe, was reported last week in Science Translational Medicine.]

ac-2015-034535_0001

A hand-held device to detect glowing brain tumors could allow closer access to the critical area than a surgical microscope

Biomedical engineer Shuming Nie and colleagues recently described their development of a hand-held spectroscopic device for viewing fluorescent brain tumors. This presents a contrast with the current tool, a surgical microscope — see figure.

Nie’s team tested their technology on specimens obtained from cancer surgeries. Their paper in Analytical Chemistry reports:

The results indicate that intraoperative spectroscopy is at least 3 orders of magnitude more sensitive than the current surgical microscopes, allowing ultrasensitive detection of as few as 1000 tumor cells. Read more

Posted on by Quinn Eastman in Cancer Leave a comment