Detecting vulnerable plaque with a laser-induced whisper

A relatively new imaging technique called photoacoustic imaging or PAI detects sounds produced when laser light interacts with human tissues. Working with colleagues at Michigan State, Emory immunologist Eliver Ghosn’s lab is taking the technique to the next step to visualize immune cells within atherosclerotic plaques. The goal is to more accurately spot vulnerable plaque, or the problem areas lurking within arteries that lead to clots, and in turn heart attacks and strokes. A description Read more

Multiple myeloma patients display weakened antibody responses to mRNA COVID vaccines

Weakened antibody responses to COVID-19 mRNA vaccines among most patients with multiple Read more

Precision medicine with multiple myeloma

“Precision medicine” is an anti-cancer treatment strategy in which doctors use genetic or other tests to identify vulnerabilities in an individual’s cancer subtype. Winship Cancer Institute researchers have been figuring out how to apply this strategy to multiple myeloma, with respect to one promising drug called venetoclax, in a way that can benefit the most patients. Known commercially as Venclexta, venetoclax is already FDA-approved for some forms of leukemia and lymphoma. Researchers had observed that multiple Read more

Tet enzymes

Vulnerability to stress – Tet by Tet

Geneticist Peng Jin and colleagues have a paper in Cell Reports this week that is part of a mini-boom in studying the Tet enzymes and their role in the brain. The short way to explain what Tet enzymes do is that they remove DNA methylation by oxidizing it out.

Methylation, a modification of DNA that generally shuts genes off, has been well-studied for decades. The more recent discovery of how cells remove methylation with the Tet enzymes opened up a question of what roles the transition markers have. It’s part of the field of epigenetics: the meaning of these modifications “above” the DNA sequence.

This is my favorite analogy to explain the transition states, such as 5-hydroxymethylcytosine. They’re not really a new letter of the genetic alphabet – they’ve been there all along. We just didn’t see them before.

Imagine that you are an archeologist, studying an ancient civilization. The civilization’s alphabet contains a limited number of characters. However, an initial pass at recently unearthed texts was low-resolution, missing little doodads like the cedilla in French: Ç.

Are words with those marks pronounced differently? Do they have a different meaning?

The new Cell Reports paper shows that it matters what pen writes the little doodads. In mice, removing one Tet enzyme, Tet1, has the opposite effect from removing Tet2, when it comes to response to chronic stress. One perturbation (loss of Tet1) makes the mice more resistant to stress, while the other (loss of Tet2) has them more vulnerable. The researchers also picked up an interaction between Tet1 and HIF1-alpha, critical for regulation of cells’ response to hypoxia. Read more

Posted on by Quinn Eastman in Neuro Leave a comment

Souped-up method for iPS cell reprogramming

Peng Jin and collaborators led by Da-Hua Chen from the Institute of Zoology, Chinese Academy of Sciences have a new paper in Stem Cell Reports. They describe a souped-up method for producing iPS cells (induced pluripotent stem cells).

Production of iPS cells in the laboratory is becoming more widespread. Many investigators, including those at Emory, are using the technology to establish “disease in a dish” models and derive iPS cells from patient donations, turning them into tools for personalized medicine research.

Read more

Posted on by Quinn Eastman in Cancer, Immunology, Neuro Leave a comment